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Preface

The development of high-order accurate numerical discretization techniques
for irregular domains and meshes is often cited as one of the remaining chal-
lenges facing the field of computational fluid dynamics. In structural me-
chanics, the advantages of high-order finite element approximation are widely
recognized. This is especially true when high-order element approximation is
combined with element refinement (h-p refinement). In computational fluid
dynamics, high-order discretization methods are infrequently used in the com-
putation of compressible fluid flow. The hyperbolic nature of the governing
equations and the presence of solution discontinuities makes high-order ac-
curacy difficult to achieve. Consequently, second-order accurate methods are
still predominately used in industrial applications even though evidence sug-
gests that high-order methods may offer a way to significantly improve the
resolution and accuracy for these calculations.

To address this important topic, a special course was jointly organized by
the Applied Vehicle Technology Panel of NATO's Research and Technology
Organization (RTO), the von Karman Institute for Fluid Dynamics, and the
Numerical Aerospace Simulation Division at the NASA Ames Research Cen-
ter. The NATO RTO sponsored course entitled "Higher Order Discretization
Methods in Computational Fluid Dynamics" was held September 14-18, 1998
at the von Karman Institute for Fluid Dynamics in Belgium and September
21-25, 1998 at the NASA Ames Research Center in the United States. During
this special course, lecturers from Europe and the United States gave a series
of comprehensive lectures on advanced topics related to the high-order nu-
merical discretization of partial differential equations with primary emphasis
given to computational fluid dynamics (CFD). Additional consideration was
given to topics in computational physics such as the high-order discretization
of the Hamilton-Jacobi, Helmholtz, and elasticity equations.

This volume consists of five articles prepared by the special course lec-
turers. These articles should be of particular relevance to those readers with
an interest in numerical discretization techniques which generalize to very
high-order accuracy. The articles of Professors Abgrall and Shu consider the
mathematical formulation of high-order accurate finite volume schemes utiliz-
ing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory
(WENO) reconstruction together with upwind flux evaluation. These formu-
lations are particularly effective in computing numerical solutions of conser-
vation laws containing solution discontinuities. Careful attention is given by
the authors to implementational issues and techniques for improving the over-
all efficiency of these methods. The article of Professor Cockburn discusses
the discontinuous Galerkin finite element method. This method naturally
extends to high-order accuracy and has an interpretation as a finite vol-
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ume method. Cockburn addresses two important issues associated with the
discontinuous Galerkin method: controlling spurious extrema near solution
discontinuities via "limiting" and the extension to second order advective-
diffusive equations (joint work with Shu). The articles of Dr. Henderson and
Professor Schwab consider the mathematical formulation and implementa-
tion of the h-p finite element methods using hierarchical basis functions and
adaptive mesh refinement. These methods are particularly useful in comput-
ing high-order accurate solutions containing perturbative layers and corner
singularities. Additional flexibility is obtained using a mortar FEM technique
whereby nonconforming elements are interfaced together. Numerous exam-
ples are given by Henderson applying the h-p FEM method to the simulation
of turbulence and turbulence transition.

The organizers gratefully acknowledge the special course lecturers for their
substantial effort in preparing the articles for publication. The organizers
also acknowledge the generous support of NATO RTO, the von Karman
Institute, and the NASA Ames Research Center for sponsoring and holding
the special course. Additional thanks is also given to RTO and Springer-
Verlag for publishing the articles in a quality book form and so making them
available to a wide readership.

Timothy Barth (NASA Ames Research Center)

Herman Deconinck (von Karman Institute for Fluid Dynamics)

March 1999
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Abstract. We describe in detail some techniques to construct high order MUSCL
type schemes on general meshes : the ENO and WENO type schemes. Special
attention is given to the reconstruction step. Extesio to Hamilton Jacobi equations
is sketched. We also present some hybrid techniques that use simple modifications
of classical TVD schemes yielding in a very clear improvements of the accuracy. We
discuss means of improving the efficiency using Harten's multiresolution analysis.
We provide several numerical examples and comparisions with more conventional
schemes.
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1 Introduction

During the past few years, a growing interest has emerged for constructing
high order accurate and robust schemes for simulations of compressible fluid
flow. One of the difficulties is the appearance of strong discontinuities that
may interact even for smooth initial data. To get rid of this difficulty, a
possible solution is to use a TVD (Totally Variation Diminishing) scheme.
Such a scheme has the property, at least for 1D scalar equations, not to
create new extrema, and hence to provide a nice treatment of discontinuities.
They have been successfully and widely used with any type of meshes (see for
example, [48] for a review and, among many others, [25] for simulations on
finite element type meshes). They are now of common use even for industrial
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simulations of flows in complex geometries. Nevertheless, one of their main
weaknesses is that the order of accuracy boils down to first order in regions
of discontinuity and at extrema, leading to excessive numerical dissipation.

Various methods have been proposed to overcome this difficulty (adap-
tation of the mesh, for example see [27,32]) but one promising way - this is
not the only possibility as we show in this paper - may also be the class of
Essentially Non-Oscillatory schemes (ENO for short) introduced by Harten,
Osher and others [18,19,34,15] and their WENO modifications.

The basic idea of ENO schemes is the use of a Lagrange type interpolation
with an adapted stencil: when a discontinuity is detected, the procedure looks
for a region around this discontinuity where the function is smooth and least
oscillatory. This reconstruction technique may be applied either to the nodal
values [34] or to a particular function constructed from cell averages in control
volumes [18,19]. In this latter case, the approximation is conservative. This
enables one to approximate any piecewise smooth function with any desired
order of accuracy.

One of the purposes of this paper is twofold: first to provide a description
of the basic ideas of the "classical" ENO/WENO methods, and second to
show how it is possible to adapt them to general geometries. It is not possi-
ble to provide a complete overview of ENO methods. Hence, this paper will
concentrate on finite volume ENO methods and triangular meshes. Never-
theless, we believe that it will provide information on the typical features of
ENO methods on general geometries, the difficulties and problems associated
with them.

This paper is organized as follows: In §2, we first recall the principle of
finite volume schemes of MUSCL-type [52]. This enables us to describe the
three steps of a finite volume scheme: the reconstruction, the evolution and
the projection step. In general, the last two steps are merged by means of a
Riemann solver and an appropriate temporal discretization scheme. Before
entering the main topic of this paper, the reconstruction step, we describe
Runge-Kutta methods due to Shu and Osher that allow to keep the TVD or
TVB (Total Variation Boundedness) features of the first order approximation
of a generalized Riemann problem with non-constant data. Then we move to
the reconstruction problem. First, in §3, we detail the "classical" methods
that are applied to real valued functions and show why it cannot be applied
on general geometries.

To overcome this difficulty, we introduce a new reconstruction procedure
in §4. We show its properties that appear to be the same than those of
a more classical Lagrange reconstruction. The practical calculation of this
polynomial is discussed in detail in §5, and we show that it can be determined
by an algorithm very similar to the Newton algorithm for divided differences.
We also discuss the impact of the choice of the polynomial expansion in the
calculation from the point of view of stability. The ENO reconstruction is then
described in §6. We also discuss other types of expansions using splines in §8.
In §11, we briefly discuss how all these methods can be extended to first order
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Hamilton Jacobi equations. A third order ENO method for CFD problems is
applied in §9 to several several flow problems, and we show that the accuracy
is improved considerably in comparison with 2nd order computations.

However, these methods are by nature quite costly. This is why we also
discuss (§10) a particular technique aimed at reducing the CPU cost of ENO
methods. Toward the same goal (getting very high order schemes with the
lowest computational cost), we also show (§12) how to modify the now very
classical second order MUSCL type schemes (on cartesian meshes) so that
numerical diffusion is reduced a lot.

2 An overview of finite volume schemes

2.1 The Euler equations

Let us quickly recall elementary facts about the Euler equations of a calori-
cally perfect gas:

OW OF(W) + OG(W) _ 0 (2.1)

+ ay
As usual, in equation (2.1), W stands for the vector of conserved quantities
and F (respectively G) is the flux in the x direction (resp. y direction):

W PU , F(W)= P u+pj p~v) p uv '
XE! P Vu(E + p)) (2.2)

G(W) =/P V 2+ P/
v(E+p)J

with initial and boundary conditions. In equation (2.2), p is the density, u, v
are the components of the velocity, E is the total energy and p the pressure,
related to the conserved quantities by the equation of state:

p=(•-1--) E-1 p(u2 + V2) (2.3)

The ratio of specific heats -y is kept constant.
It is well known that the system defined by equations (2.1), (2.2) and

(2.3) is hyperbolic: for any vector n = (nx, ny), the matrix:

OF OG
An = nx57W- + ny -- (2.4)

is diagonalizable and has a full set of real eigenvalues and eigenvectors. Let
us describe now the construction of a high order scheme.
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2.2 Finite volume formulation

We consider a mesh M consisting of control volumes {CI}, for example the
triangles of a conforming triangulation or the boxes of a dual mesh, see [1].
The semi discrete finite volume formulation of (2.1) is:

- 1 f) T.,[W(x,t)]dl =£i(t) (2.5)

Here, Wi (t) is the (spatial) mean value of W (x, t) at time t over Ci, n =
(nx, ny) is the outward unit normal to aCi, and Y7 = n. F + ny G. We first
describe the spatial approximation of (2.5), then the temporal discretization
of the resulting set of ordinary differential equations. Last, we give details
concerning the boundary conditions.

Spatial discretization The first step is to discretize i(t) up to kth order.
We define the integer number p such that either k = 2p or k = 2p + 1. We
can rewrite ICil i(t) as:

f F[W(xt)]dl = ftF[W(xt)]dl (2.6)

where, as in Figure 13, the set of the F,'s is that of the edges of Ci. On each F8,
n is constant. We consider, on any !28, the p Gaussian points {Gl}1l<<p asso-
ciated to the Gaussian formula of order 2p+ 1. The integral fr,. Fn[W(x, t)]dl
is approximated by

p

W (2.7)
1=1

where the term n,,, (t) has to be defined. Let Cj be another control volume
of which F, is a boundary part. In Ci and Cj, compute approximations of W
at time t, as well as so-called reconstruction functions (recovery functions)
Ri[W(., t)] and Rj[W(., t)]. The ENO reconstruction described in this paper
(see §4) is applied to the physical variables, then the conserved ones are
derived from them. We define

gn,1 (t) = Fniemann {nR[W(.,t)](G1 ),Rj[W(.,t)](G1)}. (2.8)

In equation (2.8), FRiemann may be any of the available Riemann solvers. In all
the examples below, we have chosen Roe's Riemann solver with the Harten-
Hyman entropy correction. The boundary conditions are implemented as in
[25].

We see that the only remaining degree of freedom is the evaluation of
Rj [W(., t)] which should be a "good" approximation of W. It is natural to ask
for the following properties [18,19] for the reconstruction R[u] of a function
U:
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P1- If u is of class C' with r > k, then the 1-th order derivative of u - R[u],
I < k satisfies () - R[u](1) = O(hk+1-1),

P2- TV(R[u]) • TV(u) + 0(hT ),
P3- The average of R[u] over [xi-1 1 2 , xi+1/2] is equal to that of u.

Roughly speaking, one may say that the property P1 guaranties the ac-
curacy of the approximation, the property P2 guarantes (for reasonable flux
functions) that the scheme is Total Variation Bounded (TVB) and hence
converges to the correct solution for any t E [0, T] while the property P3
states the consistency of the scheme. Before entering into the details of the
reconstruction step, let us briefly comment on the evolution operator.

Approximation of the evolution operator A classical way of solving
a set of ordinary differential equations like (2.5) is to use a Runge-Kutta
scheme. Among these schemes, some of them have the property not to increase
the total variation [34]. They are built as follows. The set of equations to be
solved are supposed to be written in the form

du-
d = L(U),

where the operator £ contains spatial derivatives.

1. Second order scheme: This is the classical Heun's method. It is TVD
under CFL=I.

u(1) = U(o) + At£(L( 0))

S= ljU0) + 111(1 ) +C(U(1))
2 2 +2

2. Third order scheme, TVD under CFL=1:

9(1) = U(o) + AtC(U(o))

U()= 2-()+ 1 iC)+ALQl')
4(3 4 (0)0 +

-g(3) = I1U(o) + a (U(2) +AC(U( 2)))

Until the end of this paper, we will not give more details on the time stepping
since our purpose is to concentrate on the reconstruction step of a finite
volume scheme.

3 The reconstruction step classical methods

3.1 An essentially non oscillatory Lagrange interpolation

The classical ENO reconstruction methods are derived using two well known
properties of the Lagrange interpolation of a function u: consider an increas-
ingly finer subdivision of R, (yi), and P a polynomial of degree r such that
P(yi) =u(yi) , m<l<m+r Then
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1. if u admits k continuous derivatives on [yin, Ym+r] then for any x E
[Ymi, Ym+r],

lp(k),(X) - U(k) (X)I 1 Cmaxm<l<_m+r-1iYI - YY1+1 r-k+1

2. if the k-th derivative of u, k < r, has a jump [u(k)] in xo E]ym, Ym+r[,
then ak, the leading coefficient of P in its Taylor expansion around xo,
behaves like maxm<K•m+rIYl - Y1+1l-r+k.

Although the first property stated is a well known result in numerical
analysis the second property is (up to our knowledge) nowhere clearly stated
and proved explicitly.

These two facts explain that if u is smooth then the coefficients of P
remain bounded when the mesh size decreases but blow up if one of the
derivatives of u of order smaller than the degree of P has a jump.

From these two remarks one may construct the following essentially non-
oscillatory Lagrange reconstruction in a neighborhood of a mesh point Yi.
The idea is to construct an "adaptive" stencil Sk, the points of which are
used to compute the Lagrangian interpolant pik, where pik is a polynomial
of degree k.

First, we recall that the divided differences table can easily be recursively
constructed:

k=0: [yi]u=u(yi)

k > 0 : [Yi,Yi+I,"" ,yi+k-1,yi+k]u=
[Yi+I, yi+k]u - [Yi, Yi+i, yi+k-]U

Yi+k - Yi

We can now describe the classical ENO interpolation algorithm of Harten [19],
in which a polynomial is constructed which does not interpolate through a
discontinuity of u.

ENO interpolation algorithm:

1. Start with A = {yj}
2. for I < k, consider AM` = {yjo < ... < Yjo+1-1} as the stencil for P'-.

Compute the divided differences [yjo-1, yjo," ", yoi0+-1]u and
[Yio,. Yjo0+I-i, yj 0+d~u.

- if J[Yý 0oYo,"'.,Y0o+i-1]ul < 1[[YJ,' YJo+I-IYJo+I]ul then XN" -
A- ~~Uly-else , Arf'= A~i'-I UlYJo+l+,}.

end

When one applies this algorithm to the Heaviside function on a grid with
uniform mesh size Ax, one gets

R(x) 1 if X< AX

-{ if X> -2
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It is conjectured in [19] that if the function u is smooth, say of class larger
than the degree k of the reconstruction, then the derivative of u - R satisfy
max Iu(') - R(1 ) I < Chk+1 where C is a constant that depends on the mesh
and u, and TV(R) • TV(u) + O(hk).

3.2 Application to finite volume schemes

In finite volume schemes, the variables are not known at nodes but only
their mean values on control volumes are given. There are two ways of using
the above ENO Lagrange interpolation in order to get an ENO reconstruc-
tion: the so-called reconstruction via primitive functions and reconstruction
via deconvolution. Since the reconstruction via deconvolution can work only
for regular meshes [19], we concentrate on the reconstruction via primitive
functions.

Let us consider a mesh (xi)iEN C IR and a real valued function u. The
averages ui of u are given on the control volumes [Xi-1 1 2 , xi+1 / 2 ]. It is possible
to know the values of the primitive W of u defined by

W(x) = J u(t)dt

at the nodes xi+11 2 , because

j=i
W(xi) = u(t)dt = E(Xj+l/2 -

fx-1/2 j=0

The choice i = 0 in the definition of W is arbitrary. One now determines a
local ENO Lagrange interpolant of W up to degree k + 1, say pk+l, on the
interval ]xi-1/ 2 , xi+1/2 [. This is obtained by constructing the ENO interpolant
using the above ENO interpolation algorithm. The nodal values W(Xi+l/ 2 )
are taken as interpolation data. The interpolant is finally restricted to the
intervall ]Xi-1/ 2 , Xi+lp2 [, i.e.

R[u]= d on ]Xi-1/2,Xi+li2[.

It is clear that if u is smooth enough, then property P1 is satisfied. If u
has only isolated discontinuities itself or in one of its derivatives, property
P2 is also satisfied, see [1]. The last property P3 is a consequence of the
construction:

fx,+1,'2 R[u]dx = pt+l ( -i+l12) =

(Xi+ 1 / 2 - Xi-l/2)Ui
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3.3 Possible extensions to higher dimensions and their
weaknesses

The extension of these method to higher dimensions has been carried out,
for example by Casper et al. [10] for regular structured grids. The basics of
their method are the following. They first assume their mesh is a Cartesian
product {(xi, yj), 1 < i < N, 1 < j -< M} and they take rectangular control
volumes. With the notation Aký = -k+j - ýk, the data are

- 1 fXi+1/2 rYi+1/2
= I ] ] w+(x, y)dx dy. (3.1)w~j A~xAjyyj-1/2

For Yj-1/2 < Y < Yj+I/2, they consider the primitive function Wj(x) associ-
ated with w defined by:

W 3 (X) = X 1 [f-i+;,2 w( ,y)dy1 dý (3.2)Xo Ajy yj-1/2

From (3.1), they notice that

'AiX=Wij = W-j (Xi+l12) - Wi (Xi-l/2)

so that they can consider the reconstruction via primitive function of degree
k of Wj: v3(x) = R(x,w)j.

Then, the procedure (3.2) is performed for any j. Since

d Wj(x) = ijy 12 w(x, y)dy,
dX_ Ajy 4J 1, 2

R(x, w)j can be interpreted as a one-dimensional cell average on [Yj-1/2, Yj+I/2]
of some function v(x, y). For a fixed x, one considers the set {R(x, w)j} and
a primitive V(x, y) associated to v,

V(x,y) = fv(x,y)dxdy,

whose pointwise values are known at the interfaces:

v(X, Yj+1/2) L AkYvk(X).
k=jo

We can once more apply the same reconstruction via primitive function to
v of degree k and construct a reconstruction R2 (x, y, w) = R(y; R(x; w)) of
w . It is clear that this new reconstruction will have the conservation prop-
erty, essentially non-oscillatory and precision properties: they are directly
inherited from the one-dimensional reconstruction properties.
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When the mesh consists of quadrilaterals that are not a Cartesian product,
one has to assume the existence of a smooth transformation from the physical
x - y plane the rectangular ý - v plane: x = x(6, v), y = y(6, v) The Jaco-
bian determinant J(6, v) should never vanish. The control volume Cij of the
physical plane are the control volumes Dij =]+i-1/2, i+1/2[x]Vi-1/2,Vi+1/ 2 [
mapped by the transformation. The averaged values are:

-= 1 �i+1/2 'Vi+1/2
U=aj4- 1/--/ u(x(6, v), y(ý,vr))dý dv,

where aij is the area of Cij. Then one uses the above reconstruction on the
v- mesh. The reconstruction R is:

= 1u) R 2 (V, aU)

The scaling factors are introduced so that R satisfies the conservation prop-
erty.

From this, it is clear that this kind of reconstruction algorithm is very
dependent on the structure of the mesh. For example, for the reconstruction
via primitive function, one needs to gather control volumes into subsets so
that their collection is a square. For a reconstruction of degree k, one should
be able to gather them into subsets containing k2 control volumes. This is in
general not possible, see Figure 13.

For all these reasons, one needs other algorithms to handle more general
geometries. In Section 4, we show how this can be done in the context of
general unstructured meshes.

4 The reconstruction problem on unstructured meshes

4.1 Preliminaries

In the sequel, the symbol Tin[x,y] denotes the set of polynomials P in the
variables x and y of degree less or equal than n:

n

P(xy) = E E a 3jx
t Y3  (4.1)

1=0 i+j=l

The set in [x, y] is a vector space of dimension N(n) = (n+l)(n+2)
which is the set of monomials { (x - xo)N(y - yo)j}i+j<n where (xo, yo) is any

point in R2 . The degree of P does not depend on the choice of (xo, Yo). As we
will show later, this kind of basis is not well suited for practical calculations.

Let a set of points be given. Associated with this set we also consider
a triangulation T. We may consider several kinds of control volumes, for
example the triangles of T themselves or the dual mesh. The dual mesh with
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its control volumes is constructed as follows: For each point Mi the control
volume is obtained by connecting the midpoints of the segments adjacent
to it and the center of gravity of the triangles of which it is a vertex. Let
us denote by {Ci} the set of control volume. We only require the following
properties:

- For any i 5 j, Ci n C3 is of empty interior,
- Ci is connected,
- There is an algebraic dependency of the Ci's in terms of the points of M,

i.e. the points of M are within a specific location inside the boxes, or the
node points of the triangles, respectively.

- The boundary of Ci is a polygonal line with at most No vertices.

We consider the following problem (problem P or approximation in the mean
for short):

Let u be regular enough (say in L'). Given two integers N and n, a
set of control volumes S = {CQI}1<•<N, find an element P E Rn [x,y]
such that for 1 < 1 < N,

U:=(A (Ci1),u): f. u - ( A (Ci,),P). (4.2)

For that problem to have a unique solution, one must satisfy two condi-
tions: N = (n+l)(n+2) = N(n) and the following Vandermonde type matrix2

must be non singular

V = ((A (CI),xiyj))i+jn,fl<l<N(n). (4.3)

If det V 5 0, then we will say that this stencil S is admissible. In that
case, there is a unique solution to problem (4.2).

A similar problem was first considered by Barth et al. [8] for smooth
functions, then by Harten et al. [17], Vankeirsbilck et al. [39,38], Abgrall [1]
and Sonar [20]. In the four first references [8,17,39,38], the authors consider
overdetermined systems for two reasons: first, the problem 7P has not always
have a unique solution, second they claim that the condition number of the
overdetermined system is better than that of problem P. In [1], the same
approach as here was adopted. To support this choice, we note that (4.3)
is generally not singular. Second, the condition number of the linear system
mainly depends on the basis used for the polynomial expansion, as it is shown
in Section 4.4. For these two reasons, we have prefered this approach which
also has the advantage of simplifying the coding of the global scheme.

4.2 Some general results about problem P

In this section, we give two results on the reconstruction (4.2) of a given
function u if either it is smooth or not. They generalize well-known properties
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of the Lagrange interpolation of 1D real-valued functions that have been used
as a building block by Harten and his coauthors to design an essentially non-
oscillatory reconstruction. Throughout this section, if Sn is an admissible
stencil for degree n, the symbol K(Sn) denotes the convex hull of the union
of the elements of Sn.

The case of a smooth function In [1], we show the following result. Its
proof follows easily from Ciarlet and Raviart's proof [11] on Lagrange and
Hermite interpolation:

Theorem 1. Let S be an admissible (for degree n) stencil of R2 , let h and
p be the diameter of K(S) and the supremum of the diameters of all circles
contained in K(S), respectively. Let u be a function that has everywhere in
K(S) a derivative Dn+'u with

Mn+l = sup{iIDn+1u(x)ii;x E K(S)} < +oo.

If Pu is the solution to problem 1', then for any integer m, 0 < m < n,

sup{1ID m u(x) -D
m Pu(x)II; x E K(S)} < CMn+j- 1

Pm

for some constant C = C(m, n, S). Moreover, if S' is obtained from S by an
affine transformation (i.e. there exists xo E ]R2 and an invertible matrix A
such that

C• E 5' iff there exists Ck E S such that Ck' = A Ck + xo,

then
C(n, m, S) = C(n, m,S').

This result basically expresses that if the stencil S is not too flat, i.e. the
ratio h/p is not too large, then Pu will be a good approximation of u. Let us
turn now to the case of unsmooth functions.

4.3 The case of a nonsmooth function

We begin with some notations. Let Sn be an admissible stencil. For the sake
of simplicity, we assume that (xo, yo) is any point in K(Sn). Throughout this
subsection, we adopt the lexicographic ordering for polynomials: if i and j
are two indices such that i +j = p < n, we set I = N(p - 1) + i + 1 (with the
convention N(-1) = 0) and denote by P1 the monomial (x - xo)i(y - yo)j.
We also set

Ri = (( A (C1),PI),'",( A (CN(n)),P,))T.
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Given a set of N(in) real numbers ui, the solution P = Cf(n) ajPj of problem

(4.2) may be seen as the solution of the linear system Mn (ai,..., aN(,))T

U = (Ili," ,UN(,))T, where the lth column of Mn is denoted by R1.
The aim of this section is to give the asymptotic behavior of the leading

coefficients of P1. By scaling arguments, we see that if the data ui are the
average of some u that is smooth up to order p < n, one should have

jail _- hP-',

where h is the scaling factor (a typical size of the cells). Unfortunately, this
kind of argument assumes that we work with a very particular set of stencils:
all stencils are obtained by a similarity transformation from a "mother" sten-
cil. This is far from what we need, namely an estimate involving the typical
size of admissible stencil of size h small. Moreover, it is possible that for some
stencils

E jaiI =O.
N(n-1)+1<<N(n)

This means that P is of degree n - 1 at most. With this kind of stencil, no
information at all is obtained from the leading coefficients.

We need to work with admissible stencils such that the polynomial P,
solution of problem (4.2) (for degree n) with data that are either 0 or taken
among linear combination of terms belonging to {( A (C), Pl)}cEs, is exactly
of degree n. More precisely, we define the set P',3 C ]•M for a, /3 > 0,
p E {1,.. -n} and M = (N(p) - N(p - 1)) x No x N(n) by

Definition 2. Given any p E {1,-.- n}, and two real number a > 0, 3> 0,
we define the set P',p as follows: S,, E P'•, if and only if

1. The diameter h of K, the convex hull of Sn, is 1 and (0, 0) E K
2. The stencil Sn is admissible and

I detiR1i,...- , RN(n)) I _> /

3. For any polynomial Q of degree exactly p, Q = Ej=0 ,p Z+j=i A2j (x -
xo)2(y - yo)j with maxl,i+j=i lAijI = 1, and for any partition So, S, of
Sn, with #So > 0 and #S 1 > 0, the polynomial P E Pn(R 2 ) defined by
(A (Ck),P) =0ifCk ESo and (A(Ck),P) = (A(Ck),Q) if Ck E S1
satisfies ii+j=,X laijI >- a.

In the above definition, the polynomial Q cannot identically vanish. The
polynomial P is of degree exactly n and its leading coefficients cannot be very
small. It can be shown the inequality Idet(Ri,.. , RN(n)) I >_ implies that
the stencils are not too flat, i.e. the ratio A = - is not too large. Algebraic

p p
arguments indicate that for any n and p, we can find a,,3 > 0 such that the
set Pnp is not empty.

To motivate Definition 2, we give a counterexample in R; counterexamples
in higher dimensions can also be obtained [1]. Consider the stencil {x0 =
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0, x1 = 1, x2 = 2}, and P, polynomial of degree two, such that P(O) = 1,
P(1) = 0, P(2) = 0. We then have P(3) = 1. But the stencil {xo = 0, x, =
1, x 2 = 2, x3 = 3} is admissible for degree three, and hence does not satisfy
the analogue of Definition 2 in R.

We have the following result.

Theorem 3. Let n, p, be integers and a, i0 and 6 real numbers be integers
and real numbers, as in Definition 2 and S- be an admissible stencil such that
there exists an affine invertible transformation q for which 0-'(Sn) E PC,
and 01-11] < 6. Let u be a real-valued function defined on an open subset
of d2 in R2 , u E CP,p < n, except on a locally C1 simple curve C. The in-
tersection of the convex hull K of Sn and C is assumed to be nonempty.
We also assume that the pth-order derivative of u has a jump such that
min(x,y)EcJJ[DPu](x,y)JJ >_ 7 > 0.

Then there exists a constant C(n, p, a, f, 6) > 0, invariant by affine trans-
formations, such that the coefficients in the Taylor expansion of u around any
point (xo, yo) satisfy

SlaijJ > C(n,p,a,f!,6) 'Y (4.4)
-- hn-P

i+j=n

if h is small enough.

This result enables us to distinguish between regions of smoothness and
those where a jump in one of the derivatives occurs.

4.4 Three polynomial expansions

In this section, we intend to study the numerical system that has to be solved
in order to get P from the data. We will consider three kinds of expansions
of P:

1. the "natural" expansion: for any point (xo, yo) E R,

P = E aij(x-xo)'(y-yo)i, (4.5)

O<i+j<n

2. an expansion using scaling. Define a local scaling factor s := 1/VI][
which should be read as an approximation for 1/h and change the "na-
tural" expansion into

P= E aijsi+j(x-xo)i(y °Y0 )3, (4.6)
O~i+j<n

3. an expansion using barycentric coordinates. Let S = {C 1 , C2 , C3, ..
CN(n) } be an admissible stencil. Hence, at least one subset of three ele-
ments of S,, is an admissible stencil for n = 1. We may assume that the
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set {C1 , C2, C3 } is admissible. We consider the three polynomials A, of
degree 1 defined by A(Cj)Ai = 6•, 1 < i < 3, 1 < j < 3. Clearly, we have
A1 + A 2 + A 3 = 1. These polynomials are the barycentric coordinates of
the triangle constructed on the barycenters of C1 , C2 , and C3 . In order
to get expansion (4.5), a strategy may be to look first for the expansion
of the polynomial P in terms of powers of A2 and A3:

= ajjA2AJ3 (4.7)

i+j~n

and then to get the Taylor expansion of P around the center of gravity
of C1 from (4.7) (the Theorems 1 and 3 give the behaviour of the leading
coefficients of P whatever point chosen in the convex hull of S).

In order to get the expansions (4.5), (4.6) or (4.7), one has to solve linear
N(n) x N(n) systems:

B(aoo,... ,aon))T ((A(Cj,),u) ,... , (A(CN(,,)),u))T (4.8)

where the matrix B is obtained by taking the average of (x -xo)i(y - yo)j for
(4.5), the same average times si+j for (4.6) and A'Aj for (4.7). Let us now
study the properties of these linear systems.

The case of the natural expansion A very easy consequence of the in-
equality (4.4) is:

Proposition 4. Let us assume that the conditions of Theorem 3 hold and let
h be the supremum of the diameters of the spheres containing K(Sn). Then
the condition number of system (4.8) is at least 0(h-n) for h small enough.

This fact is well known for 1D Lagrange interpolation and has motivated
the search of more efficient algorithms, such as the Newton algorithm. There
exist algorithms that generalizes it [31,30]. In §5, we propose a completely
algebraic algorithm that we show, to be equivalent to the generalization of
[31,30] for the cell average recovery problem (4.2). These method makes use
of the barycentric coordinate expansion (4.7).

The case of the barycentric expansion In the case of expansion (4.7),
we have the following result:

Proposition 5. Under the assumption of Theorem 3 the condition number
of the system (4.8) for the expansion (4.7) is bounded from above and below
by constants independent of h, the supremum of the diameters of the circles
containing K(Sn).

For this reason, the barycentric expansion is more suitable in practical
calculations.
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The case of the scaled expansion In [21] it is shown:

Proposition 6. The condition number of system (4.8) for expansion (4.6)
is invariant with respect to isotropic grid scaling. In particular it does not
depend from h.

This means that system (4.8) can be solved stably even on fine grids.
Which is a requirement for practical computations.

The scaling technique is simpler than using the barycentric expansion but
for unisotropically scaled grids it is not clear whether it is sufficient or not.

5 The explicit calculation of the reconstruction:
Miihlbach expansions, Tschebyscheff systems and
divided differences

In this section, we sketch the main results of [6] and provide the link between
the previous section and divided differences. In fact, when computing the
reconstruction polynomial by the reconstruction-via-primitive technique, it
is surprising to see that the formulae look very similar to divided differences
formula, even though an additional derivative has been taken. In this section
we explain this fact and show that the algorithm is indeed the same as the
one based on divided differences.

We begin with a definition and stay as close as possible to the notations
introduced by Miihlbach in [31]. The functional space V is in practice the
space of continuous functions onf2 or L' (S?).

Definition 7. The functions i, ... , ýpn E V form an I-Tschebyscheff sys-
tem on SQ, if the condition

(Av W1) ... .

A l , . A n ) 54"' 0
(An, W (An,

holds for the set of linear forms (information) I = (A1 , ... , An)T.

We refer to V ( . Wn as the generalized Van der Monde deter-We efr t VkAl, .. An

minant.
If {xl,. . . , xn} denotes a set of n distinct points in f2 and Ai = J,. then we

are back at the classical interpolation condition. In the type of applications we
are most interested in, {C1 ,... , Cn} denotes a set of pairwise disjoint control
volumes and I is the information about cell averages (Ai, 4) := A (Ci)4 of
4 E V. In §4.4, the functions 1,' " - , On where either of the type (x- xo)i(y-

y0 )J for (4.5) or AIA2 for (4.7). The Van der Monde condition has already
been introduced in (4.3). However, the results we present here can be applied
to more general problems.

The simple rules on linear systems enable us to get the following
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Lemma 8. The following three statements are equivalent.

1. W1, .. . , pn constitute an I-Tschebyscheff system on ?2.
2. For every function 4i : 2 -+ R and I = (A1, ... A,)T, there exists a

unique linear combination

P2 24i:=p4' I O ~ :=V~ap
pn 12:A, A2  : E aiwi

of Wl, .. . , W, satisfying the recovery conditions

(Aj,pnn4)=(A,4i,), i=1,...,n. (5.1)

Note that the conditions (5.1) are, in the case of cell averages, the conditions
(4.2). We are now ready to define the generalized divided differences.

Definition 9. The coefficients ai in the representation

n

Pn• = ai~i,

Pn'=i=1

i.e. the coefficients corresponding to the Wi's, are called generalized divided
differences of 4P with respect to the I-Tschebyscheff system 1,, Wn and

will be denoted by

O/= A1, .. A, An

The function

[nP:=rP(Pi, ..- 4= _ p W:..:W
rn = •[A1, .. A A1, .. An

is called the recovery error function.

Lemma 10. With the notation of Definition 7 the representation

"L S :1, Pn • , 1

v Wl, --- , 2 k-l, 4P; WOk-l, ... , Pn•

A ,, .. , A k- l, A k, A k-{l, .. A n )

A1, i n

for all k =1,...,n as well as

V (1, ( ., in, 0v\(I - A,, .. , An, 6
r2 4()=

hol, dn.

hold.
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We now generalize Miihlbach's Newton-type interpolation formula constructed
in [31] to the case of the recovery problem.

Theorem 11. Let m < n be natural numbers. Suppose that W1,..., Wn con-
stitute an I-Tschebyscheff system with I = (A1 , ... , An )T such that its subsys-
tem (1, ... , Pm is again an I- Tschebyscheff system with respect to A1 ,. .. , Am.

Then, for every function O E V and every x E 12 there holds the Miihlbach
expansion

Al ... .Ank] i ' [A 'Am

It would be desirable for numerical purposes to compute the generalized
divided differences not by means of the clumsy determinant formula given in
Lemma 10 but only from previously calculated divided differences as in the
Newton polynomials in R.

5.1 A linear system for divided differences

Before presenting Miihlbach's recurrence relation for generalized divided dif-
ferences in the recovery case we present a related result which already allows
the computation of the divided differences as solutions of linear systems of
equations.

Theorem 12. For any 4 : 12 -+ R, 0 E V, the generalized divided differences

ak = [': ... ' ] ,k=m+l, .,n,

are uniquely determined as solution of the system of n - m linear equations

AjýEn~m~ja~r~° W° .. ) WmD•

r A' 1 [A, ... Am ])

fori = m+ 1,...,n.

5.2 A recurrence relation for divided differences

The method of computing the generalized divided differences described in
Theorem 12 does not use previously computed divided differences exclu-
sively but requires the computation of recovery error terms. In transfering
Miihlbach's generalized recurrence relation for divided differences in interpo-
lation problems to the recovery case we finish the description of Mfihlbach
expansions.
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Theorem 13. Let m < n be integers and suppose that Wl,. ... 7 sn consti-
tute an I-Tschebyscheff system, I = (A1,... ,An)T, such that its subsystem

W1, ... ,nm is also an I- Tschebyscheff system with regard to A 1,... ,Am. For
4i E V let a denote the vector

am+ Al1 ... , A., +A, 1,, An mn 1

of generalized divided differences. Then a is uniquely determined as solution
of the linear system

Ca = u

where C E Rm(n-m) x(n-m)• If C = (_C,... , n-m) is the representation of C
in terms of the column vectors ck, then the k-th column vector is given by

[,,...,) Wmo ,+,]_ ro,.Wm (Pm+k

A2, - + [1 A, .. ,.Am 1

[ P1, .. Wm Pm+k] [ ... om ' ]
An-m+i,., A AW1, W- , ,n-1 1

A+2 ,-) n.,A mj m [i...A m An
(i,, Wm Pm ] - 1,:...'Wm IWm+kj
A2, .. , m Al , Am m

An-m+l, 1 An M An--m .... An-_1

while the right hand side U E Rm(n-m) is given by

W- r ,W

A2 , ... ,Am+l A , .. ,Am m

An-m+li,... An 1 An-m,, An- 1

A2, .. ,Am+, m, pAj, .., Am

[An m,+1,, An Anm,.., An-1M
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5.3 Some examples

An interpolatory example We explain the notions introduced above by
means of a simple example corresponding to IP = (O(x1 ), (!2), I(X 3 ))T,

_1, 12, x__3 forming a non-degenerated triangle in 1R2 . The Miihlbach expansion
is sought with respect to the system (p1,W(2, p3 defined by (j(_x) := ai 0 +
a1oX1 + aioX2, i(_lk) = 6,i, k = 1, 2, 3. Thus, we consider the linear finite
element functions on the triangle spanned by X1 , _2, x interpolating ! at
these points, i.e. the three linear functions taking the value 1 on one node of
the triangle while vanishing on the remaining two nodes. We would expect
the interpolant to be the function C(_I)p1 (1) + C(x2)W2 (x) + (3)3 (x).

The Miihlbach expansion can be written in the form

fL [X1, W2, V3 1•X (I_)

+ (1, (p2, (p3 rp3  (xJ).

61' 612'3 631

According to Lemma 8 the function pq' [5 1• aifistercvr

condition (i.e. interpolation condition) piY(xi) = •(x 1 ) and can be written
in the form p15(x_) Ollt(pi__). Thus, piY(x~1) = (xi) aioi(fl( 1_) --- a1

and therefore pi#(x) = #(Xl)p1 (x_). According to Lemma 10 we furthermore
have

[ (PIpW, (W3 0 I(_ 2 = (Io

Analogously,

Also according to Lemma 8we have rfun[tin (_) Vi2 (l) and rtsi [he jeovr
(p3 (•). Therefore, the Miihlbach expansion results in Pa l (x_) = i=Z 1 • ~(•-~i)i(•),
which indeed is the required interpolant.

An efficient algorithm for quadratic polynomial recovery We show
that the problem of recovering a quadratic polynomial from cell averages can

be broken up into two 3 x 3-systems instead of solving one 6 × 6-system of
equations. A quadratic polynomial is sought on the triangulation shown in
Figure 13. With each of the nodes x ~i = 1,... , 6, we associate the linear
functional )•i = ( A (Ci), .). As already explained, a direct computation of
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a recovery polynomial p(j_) := Eja1 <2 a.-1-- satisfying the recovery condi-
tions ( A (Ci),p) = ( A (Ci), ) for i = 1,... ,6, would require the solution
of a 6 x 6-system for the unknown coefficients aa_. The determinant of the
coefficient matrix of this system is of generalized Van der Monde-type, thus
we have high condition numbers resulting in numerical problems during the
solution process. Anyway, it would be desirable to break down the computa-
tion into smaller subproblems. We now show that Mfihlbach expansions can
accomplish this task. We assume that the triangulation is chosen such that
polynomials of degree not exceeding two form an I-Tschebyscheff system.
Note that this can always be assured in practice.

On the triangle Tmin shown in Figure 13 we compute three linear finite el-
ement functions A1 , A2 , A3 according to the recovery conditions A (Ci)Aj =
Z64 i, j E {1, 2, 3}. According to our notations these three functions comprise

the recovery function

P3 AP P' , A2, A3

Ip A (C), A (C2), A (C3)

which can be thought of as the linear part in a Milhlbach expansion. Defin-
ing the remaining functions A4 (11) = A1A2 , As(11) = A•, A6 (2 ) = A, the

complete Miihlbach expansion is then given as

P" A(C,), ,A() (Q ) =

A1 , A2 , A3
A (C1 ), A (C2 ), A (C3)]

6= rAk A1, A2 , A3+Ek4ak'rIk A (Cl), A(C 2 ), A(C3)

where the ak's denote the generalized divided differences again. Due to the
recovery properties of the linear functions Aj, i = 1, 2, 3, it follows that

( A1 , A 2 , A3  _

V A (Cl), A (C2 ), A (C 3 ) J 1.

Thus, according to Lemma 10 we obtain

r3 Ak() Ak(x_)-•= At(xz) ( A (CQ),Ak),

for k E {4, 5, 6}, and r 3 4= •(_)- 1=1 Ak(x_) ( A (Ce), f). Following Theo-
rem 12 the divided differences can be computed as solutions of a 3 x 3-system.
In our case it is easy to verify that the system has the form A a = 17 with
A = (aij) 1<ij<3 given by

3

aij = A (Ci+3 )Aj+3 - A (Ci+3)A1 . (A (CQ),Aj+3 ),

the right hand side 17 = (b1 , b2 , b3 )T is

3

bi = A (Ci+3)!-Z A (Ci+3)A"( A (Cj),l),
t=l
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and a = (ai,a 2 ,a3)T. Thus, the process of recovery can be conveniently
broken down into smaller subproblems by using Miihlbach expansions.

Remark 14. In [3], the computation of the polynomial expansion P was car-
ried out by using the error r 3!P, as here. Instead of introducing the error
functions r 3A4 , r 3A5 and r 3A6 , the error r3 4i was expanded in terms of the
Ai's, i = 1,..., 6. Then the 6 x 6-system is reduced to a 3 x 3 one. It turns out
that the method of [3] exactly reduces to the one presented here for degree 2.
For higher degree, say degree r, the method of [3] needs the solution of two
linear systems. One of them is a (r + 1) x (r + 1) system, the other one is
a (r+l)(r+2) x (r+l)(r+2) system. It is clear that the present method is much
more efficient in general.

6 The ENO reconstruction

6.1 ENO on general meshes

In [1], we have found that only a few stencils were indeed necessary to achieve
an essentially non-oscillatory reconstruction of a piecewise smooth function
on a triangular mesh. This set has to be as isotropic as possible. Moreover, the
ENO reconstruction was found to achieve the expected order of accuracy for
smooth functions, even on very irregular meshes. In what follows, aij always
stands for any of the coefficients of the reconstruction P in the natural basis,
{(x - XO - yo)}.

Then .we can apply the procedure of [1] in a straightforward manner. Let
us describe our procedure for reconstruction up to third order: (i) We start
from a given cell, C0 , assigned to a point of M, say (xo, yo) ; (ii) Consider all
the triangles having (xo, yo) as a vertex, and choose the one, say Trmin, that
minimize Zi+j=l laij I. Here, S, is the set of control volumes located around
the vertices of Trmin, (see Figure 13). For a regular unstructured mesh, there
are six possible triangles. (iii) Consider Trmin. For each of its edges, consider
the three triangles, T1, T2, T 3 as in Figure 13-a. We choose the configuration
that minimize the sum

E la-ji2

What can be done for fourth (and higher) order reconstruction is explained
in [1].

6.2 Numerical examples

We have performed several tests on the second, third and fourth order ENO
interpolation and ENO reconstruction, but we only report the third order
results since they are a priori more computationally interesting. In particular,
we intend to check numerically that the expected order of accuracy is in fact
reached for smooth functions.
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In all these examples, we have assumed that the control volumes are

elements of the dual mesh. The practical calculations of the averages in these
control volumes have been performed with a 5-th order quadrature formula
([37], Table 4.1, p.184 ).

The tests on smooth functions are performed on:

u(x, y) = cos(27r(x 2 + y2)). (6.1)

All the error estimates have been obtained on irregular meshes as the one
presented in Figure 13. The main difference between such a mesh and the

regular structured one is that the number of triangles each node belongs to
is different. We also have done the same tests with regular meshes, and we
have not seen any degradation of the convergence.

The locally smooth function we have chosen is obtained by a modification
of the one used by Harten in [15] for example : if ¢ is any angle, let a function

fo be defined by:

[-r sin (1.57rr2) ;r < -

h(xy) Y=) 2r-1+ 1sin(37rr); r > (6.2)

( Isin (2 -7r) I Irl < 13

wherer=x - t ' From fo we finally define u to be:

{ f•(x, ) ;X_< !cos 7y

u(x, Y) (6.3)

f- •(x, Y) + cos (27ry) ; x> ½ cos ry

The function defined by (6.2)-(6.3) has discontinuities in the function itself
and its first order derivatives; some of the discontinuities are straight lines
(never aligned to the mesh), one is a curved line where the jump changes from
one point to another. Last, the behavior of u is basically one-dimensional on
the left of the curve x = cos iry/2 and really two-dimensional on the right.

A plot of this function is given in Figure 13-(B). One should obtain
straight lines and smooth transitions at discontinuities contrary to what is
shown in the Figure: this is an effect of the plotting procedure in which linear

finite element hat functions are used for interpolation purposes.

Results on the smooth function We have displayed in Table 13.1 the
LI-error of the third-order ENO reconstruction. The experiments have been
done in two different contexts. The column "(a)" of Table 13.1 corresponds
to different meshes that have been generated independently. In this case, the
constant C of Theorem 1 is different for each mesh, so that the slope -3 has
to be expected in the mean only. The column "(b)" of Table 13.1 corresponds
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to meshes tha& have been successively refined: the same constant C appears,
and the slope -3 is recovered much better. Here h is the maximal radius of
the circumscribed circles of the triangles, r, is a number such that the error
is proportional to hl-.

Results on the nonsmooth function In Figure 13-(A), we have displayed
the nodal values of the third-order ENO reconstruction for the mesh shown
in Figure 13. There are no oscillations in the reconstruction. In [1], the same
representation is given for the fourth order reconstruction, and the only visi-
ble difference is a better resolution of the area surrounding the triple points.

Where the function is smooth, we should recover the asymptotic order of
convergence obtained for a smooth function. In order to check this, we have
computed the error between the reconstruction and the exact function u at
different points of the line y = 0, namely at x = 0.4, 0.2, 0.1, 0, -0.2, -0.5,
-0.75. The results are presented in Table 13 for third-order accuracy. We get
what is expected. In particular, the point x = 0 is on the line where u is
continuous but its first-order derivative has a jump, so that only a first-order
approximation is obtained in any case. Elsewhere, a third order accuracy is
recovered.

In [1], another selection procedure has also been proposed. It includes a
much richer set of stencils but no real improvement has been noticed. From
all our experiments, we can conclude that the choice discussed here is indeed
sufficient.

7 Weighted ENO reconstruction

Although the results for ENO reconstruction are reasonable, critical investi-
gations show two weak points of the approach:

1. In smooth regions the accuracy is not as good as for TVD schemes.
2. Convergence for steady state flows is usually not achieved.

In this section we are facing these problems and show how they can be cir-
cumwented.

7.1 Motivation of WENO reconstruction

The main idea of ENO schemes is to compute several candidates Pi for a
reconstruction P and to choose that one with the lowest oscillation. If we as-
sume that we are in a smooth region of the flow then non of the Pi does really
oscillate. In this context choosing that candidate Pi with the lowest oscilla-
tion means to choose the flatest reconstruction or to maximize dissipation.
This explains why the accuracy is not that good in smooth regions.

Furthermore it is obvious that if there are enough candidates Pi then
there will be more than one candidate with a comparable low oscillation.
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Thus, even small changes of the data will force a switch from one candidate
to another. This digital switching prevents convergence of the scheme for
steady state flows.

Both drawbacks can be removed or at least reduced by modifying the
ENO scheme in the following way: Instead of digitally selecting the least
oscillating reconstruction we use a weighted sum:

P := EwiPi.
i

The positive weights wi with Ej wi = 1 are choosen such that wi is small
if the oscillation of Pi is high and wi is larger for less oscillating Pi. This
scheme is then called weighted ENO scheme (WENO). It was introduced for
the one-dimensional case in [40,24] and applied to the case of unstructured
grids in two dimensions in [21].

7.2 Choice of weights

For the computation of weights, it has to be clarified how the oscillation of P
is measured. From theorem 3 one comes to the conclusion that Ei+j=, laij
should be used. However, numerical tests (see [21]) have demonstrated that
this oscillation measure is not well suited as a base for the weights. Much
better results are obtained using the following quantity:

osc(P) :- ( f h2(i+j)-41Di+jP(x)12dx) ,
(1<2+3<n

where C is the cell P has to computed for and h = _C
The oscillation measures osc(Pi) are then used to compute the weights as

follows:
Di := (f + osc(Pi))-T,

where r is positive, and
(DiEi -- ~ E .

Note, that if there is exactly one Pi with a maximum oscillation then the
WENO scheme tends to the classical ENO scheme if r tends to infinity. On
the other hand, if r tends to zero then the oscillation will not be taken into
account for the weights, which means that the scheme will become an unstable
central scheme.

Numerical tests showed that r = 4 is large enough to hold the scheme
stable even for flows with strong discontinuities and small enough to obtain
a significant improvement over the ENO scheme for smooth flows.
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7.3 Required modifications of the reconstruction algorithm

It would be a violation of the main idea to use the hierachical recovery algo-
rithm described in §5 for third order reconstruction which leads to a number
of only three stencils for polynomial degree two. For WENO reconstruction
the linear part of the Miihlbach expansion can not be fixed. Instead, the
stencils for all the triangles and not only one have to be taken into account.
For each of the triangles Miihlbach expansions are used.

7.4 A stencil selection algorithm that does not need triangles

In the last sections we have described the ENO and WENO reconstruction
algorithm using a triangulation to select stencils. This is no principal re-
striction on the kind of used control volumes as was stated before because
a triangulation of the control volumes' centers can always be constructed to
obtain the required topological information.

However, this technique may be impractical and one may wish to select
stencils for a finite volume grid without the need of a triangulation.

Grids like the dual mesh of a triangulation and also grids obtained from
a dual mesh by fusing together cells own a nice topological property: If the
boundaries of two cells have a common point then they already have a com-
mon edge. This property is not given for primary triangular grids and also
not for quadrilateral grids where cells can touch at single points.

In the following we call cell b a neighbour of cell a if their boundaries
have have a common edge. We say cell b is touching cell a if their boundaries
have a common edge. With this definition the topological property described
above means that for this kind of grids touching cells are already neighbours.

For this kind of grids the stencil selection algorithm described in [21] is
used:

Polynomial degree 1: For a polynomial degree n = 1 the required stencil size
is three. We select all that sets of three cells {Ce, Ca, Cb} as stencils for cell
CQ which have the following properties:

- Ca is a neighbor of C1, and
- Cb is a neighbor of CQ and of Ca.

Polynomial degree 2: For a polynomial degree n = 2 the required stencil size
is six. We select all that sets of six cells {Ce, Ca, Cb, Cc, Cd, Ce} as stencils
for cell CQ which have the following properties: First, {CI, Ca, Cb} has to be
a selected stencil for polynomial degree n = 1. Second, Cc, Cd and Ce have
to fulfill one of the following three conditions (see figure 13 for an example
of each type. CQ is dark shaded):

1. Central stencil:
- C, is a neighbor of Ce and of Ca, and
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- Cd is a neighbor of CQ and of Cb, and
- Ce is a neighbor of CQ and of either C, or Cd.

2. Almost central stencil:
- C, is a neighbor of C1 and of Ca, and
- Cd is a neighbor of Ct and of Cb, and
- Ce is a neighbor of Ca and of Cb.

3. One-sided stencil:
- C, is a neighbor of CQ and of Cb, and
- Cd is a neighbor of Ca and of Co, and
- Ce is a neighbor of Cb and of Cc.

Note, that apart from the central stencils this results to the same stencils
as those described in §5.3.

8 Other recovery techniques

In all what preceded, we have worked with piecewise polynomial reconstruc-
tions. This is quite standard thanks to the ease of computing polynomials.
This is also accurate since in the regular case we have error estimates. How-
ever, one might wonder whether this is optimal in the sense of minimizing
the error between the reconstruction and the function u to be reconstructed.
Since the latter is known only through its average values on the control vol-
ume, it is better to ask that the distance between the reconstruction and
the space in which u lives, is minimized provided some linear constraints are
added.

Let us give a simple example. It is well known that the Lagrange interpola-
tion is not optimal when we want to interpolate data while minimizing other
quantities, like a norm of derivatives. Let a = xo < x1 < ... < xn-1 < Xn = b

and yi, i = 1,..., n and if one wishes to minimize fa [f ]2 (x)dx in the space
of continuously twice differentiable functions with the constraints f(xi) = yi,
the answer is given by cubic splines.

Since accuracy as well as robustness of such approximations applied to
hyperbolic conservation laws depend mainly on the recovery algorithm it
makes sense to ask for recovery algorithms satisfying an optimality condition.
It turns out that the solution to this class of problems can be found in an
abstract setting in the papers by Golomb and Weinberger [13] and Micchelli
and Rivlin [29], in which a theory of optimal recovery is developed. Within
this theory one is able to show that polynomial recovery is only optimal in a
trivial sense.

The idea of applying the theory of optimal recovery to numerical approx-
imations of differential equations goes back to Morton and his co-workers
in 1988, see [7]. They considered finite element approximations and used
piecewise polynomial recovery to get information about point values and
derivatives of the unknown solution.

The details of these recovery techniques can be found in [20,36].



28 R6mi Abgrall et al.

An example is the following. Instead of taking polynomial expansion (4.1),
the following expansion is considered (this corresponds to a spline in a Beppo-
Levi space, the so-called thin-plate spline)

R(x) E-o Aj (A(C, )Y, (Ix - y12 log(Ix - yl)))
(8.1)

+ aoo + alox + aoly

where the averaging process is done with respect to the variable y, and the
integrals are computed with a quadrature formula. The cells Ci2 belong to
a stencil Si around the node Mi of the mesh. It is constructed in the same
spirit as before. The constraints are

( A (Cij), R) = (A(Ci,), u), k =1,...M- 1,

where Cio is the control volume associated with Mi, and

M-1

for all p E {1,x,y}: Aj ( A (Cij),p) = O.
j=1

This gives a (M + 3) x (M + 3) linear system that is solvable if the stencil
Si contains an admissible stencil of 3 elements for the linear reconstruction.
The expansion (8.1) minimizes

J(u) = (2 ) \xiyi dxdy.

If M = #Sj = 3, R is a linear polynomial. Thus, in practical applications,
a stencil of 4 elements is taken. For ENO applications, the reconstruction is
performed on the stencil that has the smallest total variation, computed once
more by a quadrature formula.

Several numerical applications have been tried with this technique, in par-
ticular in [36], on rotating cone problems and the Collela and Woodward test
case of supersonic flow in a channel with foreward facing step. Improvements
with respect to linear reconstruction technique are reported there, they are
particularly pronounced for the rotating cone problem.

9 A class of high order numerical schemes for
compressible flow simulations

We have applied the polynomial reconstruction method to various test cases,
with polynomial of degree 2, on various test cases. Here, as said before, the
physical variables are approximated in the setting of §2.

We have reduced the order of accuracy of the reconstruction for cells that
are too close to the boundary. For them, a proper calculation of the ENO
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stencil may be impossible because the set of possible stencils is biased in one
direction due to the boundary. For the third-order scheme, these cells are
those related to a mesh point that belongs to a triangle having at least one
point on the boundary.

9.1 Numerical tests

All the examples we propose now have been computed with the second and
third-order ENO schemes. The ratio of specific heats, -y is always set to 1.4.
We present numerical computations of the reflection of a shock on a wedge.
Other calculations, including the Collela and Woodward test case and 2D
shock tube problems can be found in [3,2].

In these two examples, the post shock conditions are p = -y, u = v = 0 and
p = 1. The preshock conditions are determined from the Rankine-Hugoniot
relations with a shock Mach number of 5.5. The only difference between the
two cases is the angle of the wedge, 0 = 300 in one case and 0 = 450 in the
other one. The kind of mesh we use is also different. In the first case, it is
a triangular mesh with 8569 nodes and 16806 triangles, in the second one it
is made of squares and triangles on the boundary. It has 23990 nodes and
23771 elements (triangles and quadrangles).

In the first case, we have a double Mach reflection, [9]. By comparing the
density displayed in Figures 13.6-A and 13.6-B, it is clear that our 3rd order
ENO scheme improves the resolution of the various features of the flow. In
particular, the slip line coming out of the triple point is clearly visible on
Figure 13.6-B while barely existing on Figure 13.6-A.

The second example is even more interesting. First it shows that our
methodology is easily extendable to more general meshes, see Figure 13.8.
Second the test case itself demonstrates the improvement between accuracy
of first order (Figure 13.9-A), second order (Figure 13.9-B) and third order
(Figure 13.9-C). Following Ben Dor [9], Figure 2.42-c, page 102, we see that
0 = 450 and M = 5.5 corresponds to a double mach reflection very close to
the regular reflection transition. On Figure 13.9-A, we see a regular reflection.
On Figures 13.9-B and 13.9-C, we see double mach reflection, but the details
of the internal shock and the slip line coming out of the triple point are much
better resolved in the third order simulation.

9.2 Some remarks on the formal accuracy of the scheme

We would like to point out some difficulties of these high order finite volume
schemes that have been apparently unnoticed yet. Following many authors,
we have recovered the density, the x- and y- component of the velocity and
the pressure. The choice of the last three variables is dictated by the fact
that (i) the density should remain positive, (ii) the pressure is a Riemann
invariant and should remain positive, (iii) in a Riemann problem, the normal
component of the velocity is also a Riemann invariant, hence the choice of
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the velocity component may be wise. Nevertheless, all we have said on the
recovery problem assumes that the variable to be reconstructed is a conserved
one which is true for the density only. So one may question the validity of
our approach.

We first discuss the case of the velocity. In fact, the starting point of the
reconstruction procedure is the averaged velocity:

(A(C), (pu)) ___pd

uc -( A(C), p) fC pdx

and
(A(C), (pv)) f pvdx
VO A (C), p) fC pdx"

Thus UC and Uc appear to be true averages, not with respect to the measure
___ p.dxNo

A(C),. f d---' but with respect to the measure (')c = 12- d Now,
respectf, p dx

one can easily convince onself that all that has been done with ( A (C), .) is
also true for (')C, and things become clear.

This is no longer true for the pressure, since the "averaged" pressure is

P (A (C),1E) (A(C), (pu)) 2 + (A(C), (pv))2}(•/-1) ~ ~ ~ =(()E (C), p)

= (A (C),p) + R

where
2R=( A (C), (pu)2) + ý A (C), (pv) 2) ( A (C), (pu)) 2 + ( A (C), (pv))2

( A (C), p)

If there exists a measure pu such that PC fc p d/L, a necessary condition is
7R = 0. Unfortunately, this can not be expected in general.

An alternative to these problems is to work directly on the conserved vari-
ables, but then there is no control on the positivity of the pressure. However,
the improvement in accuracy is obvious, despite all these problems, as it can
be seen from Figure 13.6-(A), 13.6-(B) and 13.9.

We end this set of remarks by noticing that in the second order case, there
is no problem because one can interpret the averaged quantities as their values
at the centroid of the control volume with second order accuracy. Then the
"averaged" pressure has to be understood as the pressure at the centroid,
with second order accuracy.

10 Multiresolution Analysis

10.1 Introduction

The simulation of engineering problems requires more and more sophisticated
numerical models, finer and finer meshes discretizing complex geometries.
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Even with the most powerful computers, these tasks are very challenging
and cheaper computing techniques are needed.

The modern numerical methods, such as the TVD or ENO schemes, use
many switches that are essential only in a small part of the flow. To reduce
their CPU cost, the use of the solution structure appears as an appealing
guide to a better distribution of the computer resources. This goal can be
achieved via multiresolution (MR) analysis. Recently, A. Harten has devel-
oped a framework that is general enough to contain some of the wavelets
families [12] on R but can also be applied when the data are represented
on unstructured meshes by cell averages, the natural output of finite volume
schemes.

Here, we first describe a technique to represent data which originate from
discretizations of functions in unstructured meshes in terms of their local
scale components and give some numerical applications. Then, we show how
to exploit a particular version of Harten's multiresolution analysis to reduce
their CPU cost. Last, we provide some numerical illustrations.

10.2 Harten's multiresolution analysis on general meshes

This section is a very compact r~sum. of [5]. We consider a domain S2, with
a triangulation T(S2).

We construct a set of control volumes (Ci)i=1,N as before ; they should
exactly cover S2 such that if i / j, Ci n Cj = 0. In all the numerical examples,
the control volumes are the elements of a dual mesh. If f belongs to L' (02),
we can represent f by its average values A (Cj)f. The idea is to represent f
not by the set ( A (Ci)f)i=I...N but by an equivalent representation made of
the cell averages on a coarser mesh and a set of scale coefficients that measure
the difference in information between the representation of f on coarser and
coarser meshes.

The method needs three ingredients: (i) an agglomeration procedure to
construct levels of decreasing resolution, (ii) a discretization mapping from
each level of resolution onto a finite dimensional vector space and (iii) a
reconstruction mapping that is a right inverse of the discretization. We detail
each item of the above list. The definition of the first two items is very closely
related. For a complete set of details, the reader is referred to [5]

Discretization We assume that we are given a sequence {Cj} of control
volumes that are non overlapping. We set D9 : L'(I?) •-+ R'" defined by
Di (f) = ( A (Ci), f). In the next paragraph, the sequences of control volume
clusters {{C 1 }} 1=1 ...L are labeled by 1, and D' will refer to the discretization
defined with the cells {Cl } for one level 1.

For numerical purposes, it is essential that if one knows the representation
of f on one level 1, one will know its representation on the coarser levels, i.e.
for indices smaller that 1. This nestedness defined by Harten can be stated
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formally as:
D1(f) = 0 implies D'-'(f) = 0. (10.1)

Since the discretization operator is known, everythings will rely on the way
the cells Cl are constructed.

An agglomeration procedure We wish to construct L > 0 levels of dis-
cretization. We rename the control volumes Ci defined on T(S?) by CL, there
are NL = N such control volumes. We set CL = {Cf }j-i NL. Assume that
C1, 1_< I < L is known. If{1i,-- , ,qN 1 } is a partition of {1,.. •,N1 }, we
set

CO 1 = (10.2)

and C- 1 .{C- 1 ,., ,_}. Clearly, UN'-'Ck- = 0 and 1 nC h' = 0

if i 5 j, since the Cf are assumed to be open. Thanks to (10.2), the nestedness
property (10.1) is true. In fact an explicit calculation shows that

D-1 I=l (fjE-T(S) ic _-11'

This obvious equality enables one to get knowledge of the discretization of f
at any level 1 < L without knowing f explicitly, provided DL7(f) is known.
Now the key issue is the definition of the 1(s.

If the control volumes were squares, like on a cartesian mesh, the obvious
procedure would be to gather four cells provided they share a common cor-
ner. This is what is done in multigrid, or in domain decomposition methods
(except here we are likely to have many subdomains, depending on the level
of resolution).

In the present context, the same principles have been applied. In [5], we
have used the agglomeration procedure described in [14] initially derived for
multigrid acceleration; it has been used for the numerical examples of this
section. For the flow simulations, we have preferred to use a recursive domain
decomposition algorithm [26] because it enabled us to have a better control
of the number of agglomerated cells, and a better control of their shape.

Reconstruction Once the discretization of f is known at level 1, we need
a reconstruction of f, i.e. we need to find a function R,(f) E L'(Q?) such
that D' [R1 (f)] = V1 (f). We have chosen to look for a piecewise polynomial
function of degree r (= 2 in practice) that is defined locally, for each cell C .
Since R1 is a right inverse of V1, the particular choice of the discretization
imposes ( A (Ce), R 1(f)) = ( A (Ci), f) but this is the only constraint. Any
other recovery procedure might have been employed, provided this conserva-
tion constraint is true. In particular, the recovery procedure might be non
linear, or it might have used non polynomial functions as suggested by [36]
and sketched in §8.
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This shows that the suitable reconstruction technique should be the same
as the one we have used for the ENO methods in §4. The only remaining
question is how to define the stencil Si. This is achieved by an heuristic
procedure inspired from [1,3] as described in §6. However, we only need one
stencil per cell Cf instead of several as in §6.

First we identify each cell Cl with its center of gravity. Thanks to this, the
method is not restricted to control volumes generated by triangular meshes,
because at this level we may forget the origin of the control volumes. Second,
we build a Delaunay mesh1 on these points, and remove the spurious triangles
that lie outside the original domain 02. More precisely, we say that a triangle
lies outside the domain if its centroid is not in the domain. This can be
checked in practice with the help of an efficient sorting tool. Then, we also
remove the triangles that are on the boundary of this new mesh and are too
fiat. Once this is done, we construct the stencils: for each triangle (A, B, C) of
this mesh (i.e. for a set of 3 cells at level 1), we add the three other points/cells
shown in Figure 13.10. More details can be found in [3].

Data compression Once all this is done, we can consider the Ni+1 er-
rors, defined for each cell C!, by eý+ 1 

= ( A (C0+ 1),R 1(f)) - D)+'(f). By
construction, we have + C•+ e• 1 = 0.

We have N, such linear relations between the errors at level 1 + 1, thus
we can define N1+1 - NI independent scale coefficients d•+l, by the following
computation: for each j < N1, we set d'+1 = e'+1 for all i E I•+1 except the

last index, and we set dl+l = (d,+1," , d......-+1  N)' It can be shown that

DL(f) = ((A (CL), f), A, (CLf)) (10.3)
€-+[V) (f ), d,-, dL]

is a (linear) one-to-one mapping.
Moreover, from Theorem 1, if f admits a p-th continuous derivative, then

d -= O(hp+l) (hi is a characteristic size of the Cl), provided the mesh is
regular enough. This remark enables one to represent DL(f) within a given
tolerance F, with less than NL degree of freedom. To do so, we replace the
scale coefficients in (10.3) by truncated ones,

d~~ d ifI iI> 2 k
= 0 else.

More sophisticated expressions for ek can be used, but it does not affect that
much the compression factor IL defined as the ratio between NL and N1 plus
the number of non-zero d•,

NL

= N1 + EI=2,NL #{Id'I > el}"

1 A triangulation is a Delaunay triangulation if no point of the triangulation lies

within the outer circles of each of the triangles.
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10.3 Numerical examples

The power of the method is demonstrated by means of a piecewise smooth
function on a complex geometry which looks like what is shown in the upper
left part of Figure 13.11. In the upper part of the figure one sees cell averages
on a sequence of coarser grids. The two plots in the lower part are isolines of
truncated scale coefficients, one plot for the restriction from the fine to the
medium, one for the restriction from the medium to the coarse grid. If the
reconstruction starts from the coarsest grid and uses only the non-zero scale
coefficients, then the cell averages on the finest grid as shown in the upper
left part are recovered within plot accuracy.

In Table 13, with the entry f2, we represent the tolerance e, the compres-
sion factor 1A, the L'- and L'-error for this particular function. The same
information is given for fi = cos 27r (X2 + y 2 ). In [5], other examples and de-
tails are presented. In particular, we try to quantify what we loose by using
unstructured meshes, compared to Cartesian ones.

They all indicate that our method is stable and has the same accuracy
on structured and unstructured meshes.

10.4 Multiresolution analysis and ENO schemes

In the ENO method of §9, the key point is the use of a piecewise polynomial
reconstruction, the same as here, and a stencil selection procedure. Then, the
MUSCL method is applied, with an ENO reconstruction on the physical vari-
ables. Nevertheless, this is costly. The previous concepts can help to reduce
significantly the number of ENO reconstructions. The idea is to use a two-
level multiresolution scheme. Only one set of scale coefficients is produced
and we modify the ENO reconstruction as follows: for each fine cell C2 and

physical variable fi, if jd-j < c, we use the reconstruction of f on the coarse
level in the MUSCL method, else, we apply the ENO algorithm. The other
details of the scheme remain the same.

10.5 A numerical experiment

We have applied this simplified ENO scheme to various configurations: the
interaction of a shock with a 900 wedge, of a shock with a ramp and of a shock
and a vortex with a ramp. Here, we illustrate the method on the interaction of
a shock and a 300 ramp. The shock Mach number, evaluated from the post-
shock conditions, is 5.5. The fine mesh has 33943 points and 67224 triangles,
the coarse level is made of 10000 cells. Figure 13 shows the Mach number
isolines. Most of the known structures of this double Mach reflection are well
represented, in particular the slip line out of the triple point, as well as the
vortex that results in the interaction of the weak shock out of the reflected
one and this slip line.
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Figure 13.13 shows the isolines of the ENO-indicator for the density (all
the error indicators look similar, except for the slip lines where nothing is
detected for the pressure). Here, e = 10-2, and only 14% of pure ENO re-
construction was done at this stage of the computation. The compression
factor is always larger than 3/4 of its maximum possible value NL/N1. The
simplified ENO scheme runs, in this case, 2.5 times faster than the pure ENO
one. On the other examples, the ratio was about 2-2.5. This ratio is clearly
problem dependent. The most expensive part of the scheme is the flux evalu-
ations (Roe's scheme here), while the reconstruction cost, overhead included,
becomes almost negligible.

11 Other applications : Hamilton Jacobi equations

Eno schemes have been applied to other problems, in particular the approx-
imation of the Hamilton Jacobi equations

au
t+H(x,u,Vu)= 0 x'E2,t>Ou(X, 0) = u0(X) x E s?, t = 0 (11
Boundary conditions.

In (11.1), u : S? x R+ -- + R where S is an open subset of RN. Here, N = 2
but this does not change anything to the discussion. The boundary conditions
can be of the Dirichlet type for example, but this point will not be discussed
here, see [45,41] for details.

The existence and uniqueness of the viscosity solution of the Cauchy prob-
lem (11.1) is discussed in [46,45] and the reference therein. Our purpose is to
discuss some elements the numerical approximation of

19U
t +H(Vu) = 0x E R2 ,t > 0 (11.2)

u(x,0)=uo(x) xER 2 ,t=O

with a triangular unstructured mesh. More details are given in [42], general-
isation to (11.1) is rather obvious via [41].

In [44,47], several numerical upwind schemes have been constructed. They
rely on the strong formal analogy between the viscosity solutions of (11.2)
and the weak solutions of

OW OH(W)+ --0xEIR2 ,t>0
Ot Ox (11.3)

W(x, o) = Vxuo(x) x E•R2, t = 0.

From (11.3), any reasonable numerical scheme for conservation law should
give rise to a numerical scheme for (11.2) : Godunov, Lax Friedrichs, ect. In
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[47], only the case of regular Cartesian grid was considered. Any of the proofs
could be applied even to a non orthogonal structured mesh. Their work has
been generalised in [42] and error estimates are provided.

We consider schemes writting like

un+l. Uý uin_ /tR(VT un, .. . ,VTiun)* 114

In (11.4), the set {Ti,', Tk, } is the set of triangles that share Mi as vertex,
the quantities are VT, un are numerical gradients of the node values u0. The
scheme is formally first order when VT, un is the gradient of the (continuous)
piecewise linear interpolation at the vertices of the mesh.

It is shown that a first order monotone scheme that has the additional
property of beeing "intrinsic" is convergent, and one has the following error
estimate

max u0 - u(Mi,tn)II • C( Mesh ,T,H, uo)v/-hM• ,nEN -

where Mi is a generic mesh point, tn = nAt, the constant C depends on
standard regularity properties of the mesh, the Lipschitz constant of H and
u0 . The parameter h is the maximum of the diameters of the circumscribed
circles of the triangles. The proof does not depend on N = 2, the dimension
of N. By saying that a numerical Hamiltonian is "intrinsic", we mean the

TT2

Fig. 11.1. The neighboring triangles of Mi

following property: take any triangle T, cut it in two parts as on Figure 11.2,
then, since u is assumed to be linear in T, the gradient of u is the same in Te,•t
and Tt. The number of arguments in 7- is increased by one, but two among
them are the identical: they are VTU. The numerical Hamiltonian is intrinsic
if the value of 7-1 is not modified. This is obviously true for the Godunov
solver, and appropriate weights enable to have the same property for the
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Lax-Friedrichs one. This property is usefull in the proof : the fundemental
difference between an unstructured mesh and a Cartesian one is that the
mesh is not invariant by translation. The "intrinsic" property, in some sense,
replace the invariance by translation one. Note that a structured mesh is not,
in general, invariant by translation.

M.~

T,.t ~T T.t U T,'!

Fig. 11.2. Illustration of the intrinsic property

To increase the accuracy of the scheme, any of the previous ENO or
WENO techniques can be applied. The algorithm is :

1. given (0)Mj, compute an ENO/WENO Lagrange reconstruction within
each triangle with the algorithm of §6. We call IrTUn the reconstruction
in a generic triangle T,

2. Given any node Mi, consider the set {Ti,..., Tki } and compute

VT. WrT. u'%(Mi), - - . , VT,,, 7rT,, un (Mi)

the gradients node values at the vertex Mi
3. Compute the numerical Hamiltonian with these arguments,
4. Take any Runge Kutta scheme, for example the TVD ones above, to

update the solution.

The ENO algorithm has been successfully used in [42] to compute the ray
paths through a lense, or for a Geophysical problem [43].

12 Schemes with adaptive limiters and fluxes

The simulations of severe flow conditions, such as in the reactive flows, re-
quire robust numerical methods. Many computations use a class of algorithms
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based either on flux vector splitting (FVS) or on flux difference splitting
(FDS). Liou-Steffen [49] have proposed a remarkably simple upwind FVS.
This splitting, called AUSM, treats the convective and pressure terms sepa-
rately. The convective quantities are upwind-biased extrapolated to the cell
interface using a properly defined cell face advection Mach number. AUSM
keeps the qualities of FVS (robustness and efficiency) and recovers the accu-
racy attributed to FDS. Radelspiel-Kroll [50] proposed several modifications
in order to improve the scheme's ability to solve viscous flows correctly. In
particular, this includes a switch from AUSM to van Leer flux splitting (VL)
through strong shock waves. In this Vsection, we retain this idea but we
use it differently [59]. The switch, here, is related with the local accuracy
of the scheme. When the scheme degenerates into a first-order one (outside
a shock wave), it is convenient to use AUSM; and when the scheme is a
second- or third-order, VL is better in order to minimize the error terms.
To capture strong and (or) rapid physical fluctuations accurately, the local
variation of each quantity has to be incorporated as much as possible in the
writing of the scheme. ENO schemes choose the stencil which provides the
most regular solution in order to minimize numerical over and undershoots.
In this method, we take the stencil which minimizes the numerical error terms
(dissipative and dispersive terms). These terms have different expressions fol-
lowing the local evolution of quantities. To improve efficiency, the equivalent
system (ES) needs to be studied, including the expression for the slope lim-
iters. Their expressions are controlled by the local but also by the environing
physical variation of the quantities. For each quantity, six different cases are
considered, each associated with a different physical variation. A triad of
limiters is defined which minimizes or cancels the second-order truncation
errors. From this study, a new explicit scheme is written. Compared with a
standard TVD-MUSCL scheme, it is no more complicated and it gives a more
precise solution. It is applied to the 1-D test case proposed by Shu-Osher [51]
to simulate the interaction between a moving shock wave and a turbulent
flow. The results show that we obtain the same precision as with their ENO
scheme. The improved accuracy is also demonstrated by the computations of
a 2-D supersonic jet.

12.1 MUSCL Approach and Flux Splittings

The hyperbolic part of the conservation form of the 1-D Navier-Stokes equa-
tions is classically written:

Wt + F, = 0 with W = [p, pu, pE]T, (12.1)
W(x,0)=W°(x), -oo<x<+0o, t> 0

where p, u and E are the density, the velocity and the total energy. In the
discrete form, (12.1) is expressed as:

Wn+ = Wj- a ViT+2 - .Ti1_) (12.2)
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with Wj = WJ= W(Vj1), a = At/Ax,and Y+l FT(V!', V', V7'-lV7-2 )"
Note that W are the conserved variables, the Aiux Y may not be expressed
in terms of W but in terms of new variables V. This method is devoted to
improve the numerical simulation of compressible mixing layers, with possibly
chemical reaction. because of that, we have chosen V = (p, u, T)T where T
is the temperature. Note that all the limitation procedures are performed
on the variables V. The numerical Y verifies F(V, ..., V) = F(V) (Note we
write it in termes of the V-variables). Ax is assumed to be constant and At
is related to Ax by a CFL condition. With the MUSCL approach [52], the
backward and forward extrapolated values of Vj+½ at the interface j + 1 can
be written as:

L :l2 Vj+1, (PR ).

13+1/2 = L(Vj, Vj+i, Wi) and V+1/2 =R(Vj, )

At the interface j - 1/2, we have:

V3 1 1 2 = L(Vj-i, j, W2) and V:- 1 2 =

where W and WL,R are non-linear functions of rj with rj = vi-vi (compo-

nent by component). The non-linear interpolations L and R have to verify the
following properties: homogeneity, translation invariance, left-right symme-
try, monotonicity and convexity. The flux Fj+ x is written in the general form

Fj+½ =F(VL ,VR I) - 5AG where PAG = 4i [G(V!/+) - G(VL½1 )] is a
dissipation term. We are more particularly interested in FVSVL and AUSM
schemes. As in [50] we couple both schemes; but our coupling is different. It
is based on an analysis of the ES and takes account of the properties of each
scheme at the first and second-order. This coupling is advantageous because
the expression for the fluxes is both very similar and yet exhibits different
properties. In the case of a perfect gas, with the constant-pressure specific
heat Cp and the specific heat ratio -y assumed to be constant, if we define

F1 S = M = F+ + FM.= (ML+1)2 (MR-1)2
4 4

FyFS= [' =F: + F- = I L + pR1-M ]

0c 0

FDS= pcu ,
L pcH J

then these both splittings can be written, at the grid point j + ½ and for

-1 < M < 1, as follows
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- The FVSVL scheme:

F = 1FSFIDS + FaFS

FM+FDS(VL) + FMIFDS(VR) + F: + Fa- (12.3)

- The AUSM scheme:
F = (FM+ + FMf)Ff(VL)+FjIS(VII) + f:+ F,-f-

2 (12.4)

! = IMI and AG = [FIs (VR) - FPS(VL)]

where c, p and H represent, respectively, the sound speed, the static pressure,
and the total enthalpy.

The analysis of (ES), obtained from Taylor expansions, quantifies the
truncation error of the discrete form as Ax and At -+ 0. V and F are as-
sumed to be analytic functions. For each component Vi , the expansions reflect
the environing physical behaviour associated with the specific approach used
here. Six different cases are considered for each component Wi (Fig 13.14):

- No extremum at j
"* case 1 : monotonic evolution,

"• case 2 : extremum at the nodes j-1 and j+1,

"* case 3 : extremum at the node j-1 or j+1,
- Extremum at j

"* case 4 : no extremum at the nodes j-1 and j+1,

o case 5 : extremum at the nodes j-1 and j+1,

"* case 6 : extremum at the node j-1 or j+1.

12.2 First-order Error Terms in Space

After calculated the Taylor expansions of r(V) , (r(V)) (a = 1, 2) and
of the fluxes T1 = T1(,(r•(V))) with T = FjM, FM+, FDS ,... at the node j for
both cases V•, 5 0 and V, = 0, (1) is transformed into:

Wt + Fx + Ax [A] Vx + O(Ax 2) = 0 (12.5)

where[A] is a (3,3) matrix. The first-order error term in space, for the k1h

equation (k = 1, ... , 3) of the system (12.5) and for the splitting (12.3), can
be expressed:

3
Erk = Z AkiVi_i=1

(FDSF +-1 + FFS FLI +G!G) [g]L
Si-puT --(�FSsFI + --FF-I -- i i

2 2- G )[9219
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For the AUSM approach (12.4), the expression is a little more compli-
cated:

Erk =
S (FDS Fp+' - F FS L' + -qfL' r L

_ M ý + M FLI±+F:++!GiL,) [giLl I~~+ V ~ 2 LJ~Mi 
2 

G " , Ty .i ]Lt

i=p,uT -(FPS• + FS CRi,+ F.- -- G [ R] Lgi J

where gL,R =L'R(W,) = 1(-1) + ýE ) 1 if V = gL,R = gLR(')=
- 2 2 gW5 ,F' dF+, dF- (L,R),

' (- ',0(1) if Yd $ 0, o = ", F+' =-• (F-)' - , (F
dFDS (LR),= dG
dV.R (G = d-n, etc.

In order to develop a simple analysis, we assume at node j:I VR - VL«I < <

max(IV/RI, IVL I), (i = 1,...,3). This says the jump at the interface j is
considered to be weak (the strong discontinuities are excluded of the analysis).
The case IV/R- V/Ll ; max(IV/RI, IV/LI) is not considered in this paper,
although it may exist in the velocity under certain circumstances, such as
when this quantity has strong fluctuations around zero. The expansions are
calculated for positive values of M. The expressions for M < 0 are obtained
by symmetry ( gL is replaced by g!" and reciprocally). The first-order term
cancels if gL,R 0 . In general, we assume that

for r < 0, ,o, = W',' = 0 and then W, = 'oi(-1) 0. (12.6)

Therefore, the first-order error term cancels if

W=2 W = 2; for r=3 (12.7)

(if there is an extremum at node j or if

iL= tR
W2' =W2'2 Wo', for r=1 (12.8)

if there is no extremum at node j.
The Taylor expansions at node j include the presence of one extremum

(cases 4-6) or none (cases 1-3) at this point. On the other hand, they do not
say whether one extremum exits or not at the neighbors j - 1 and j + 1. If
there is no extremum associated with j - 1 and j + 1 (cases 1 and 4), no
additional constraint appears; but if an extremum is present at these points,
then either a different definition of Vp (cases 2 and 3) is required in order
to preserve the second-order accuracy or the scheme accuracy automatically
degenerates (cases 5 and 6).

If Vi. $/ 0 at node j, the condition (12.8) is easily met if the nodes j - 1,
j and j + 1 have no extremum for component Vi (case 1). In this case, it
is sufficient to take the same function in the second-order TVD domain for
each point j - 1, j, j + 1. If one extremum exits for one or both neighbors of
node j (case 2 or 3), the condition is more restrictive. Since we have o'L = 0

and/or , the second-order accuracy is ensured only if

W'pI(1) = 0. (12.9)
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If Vi. = 0 at point j, the condition (12.7) is obtained if j - 1 and j + 1
are not associated with an extremum (case 4). But this condition is no longer
met if there exists at least one extremum at one of the neighbors of j. For
these cases (cases 5 and 6), the first-order error term does not cancel. Case 5
corresponds to local phenomena of wave length 2Ax, and case 6 to phenomena
of wave length 2Ax or 3Ax. Therefore, when we have physical variations
with wave length fluctuations greater than 3Ax, the scheme is second-order
in space if the expression of ýp is well-defined. When wave length fluctuations
are smaller than or equal to 3Ax (cases 5 and 6) the first-order error term is
still present. In this case, the scheme has strong dissipative properties that
can eliminate the numerical instabilities.

For M > 1 , the error terms have the same expression whatever the
splitting; but for M < 1 , their expression, [A] = [A]AUSM for Liou-Steffen
and [A] = [A]VL for van Leer, depends on the splitting chosen. For case 5,
where gR = -1, and for case 6 where gL = -l and g! =0, the error terms
are written:

[A]AUSM AUSM VLA] [A ] + [A],,

[A]VL [A]VL A]VLI[Ac + [Aa , with

[A]US
M = [A]VL

and [A] VL given by

All A12  A13
[A]cL = uA11 uA12 +pA~l uA 13

HAI, HA1 2 + puAii HA 13 + pCpA11

where
All = EM, A 12 = P(M615 + bM16 ),

A 13 = -2TMd6 for [A]AUSM,

A1 = � (a2655 + b2 516),

A1 2 = P(M615 +b6 16 ),

A13 = -ebdc for [A]•L.

a2 = 1+M 2 b l+M2 .2

d-= 1-M2

6 = 615 +

_L C2 2 1 -(A 2 + P-61).
0 00 0
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J15 and 616 are the Kronecker symbol, 1 = 5 (case 5) or 6 (case 6).
The error term induced by AUSM splitting is always smaller. The differ-

ences become greater when M -+ 0. For case 5, for example, when M - 0,
many components of [A] cancel with AUSM splitting (Fig. 13.15). From this
study, we deduce

Condition 1: the AUSM splitting (12.4) is chosen when the scheme de-
generates into a first-order scheme (cases 5 and 6).

12.3 Second-order Error Terms in Space

In this section, we see that the first order terms of (ES) cancel if the limiters
satisfy given properties at some specific points only. The second order terms
only remain and we specify explicitely which limiters should be taken so that
these term also cancel. The system (12.2) has the following expression:

Wt + Fý + Ax 2 (BVxxx + CVxx + DVxx + EVx) = O(Ax 3 ) (12.10)

where

B = B(Xi, V),

C = C(sI.-i¢" ^ pI R . ItL V, VX) if Vjý 0 0 at node j
( cases 1 - 3),

C-0if Vi. =0 at node j( case4 ),

D =D(x2, V ,VX),

E =E(V,Vx)

with

- IfVjý $A0 at j,xi =1-3W2 and X2=l-Wi.-W'•.
-IfV¼ =0 at j,X =2+± -W-2+2Wo-4W' and X2 =2--1--p 2

The matrices B, C, D, E are provided in annex A.
By homogeneity, the cancellation of C for cases 1-3 gives the following

condition on 'o": W"(1 (1) = Wp1R(1) = "IL(1) .The terms EjV• (i = 1 (conti-
nuity eq.), 2 (momentum eq.), 3 (energy eq.)) come from fluxes that contain
products of at least three primary quantities (for example pu 2, ... ). For each
equation, the error terms are expressed in the annex A. With AUSM and VL
splittings, the error terms are the same, excepted for EjV, and the dissipation
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term in the energy equation

(E1Vx)AUSM (LoT•2 [-3pux - cMp. + 2pcM(LogT)x],

(E1AV)VL 0

(E 2VX)AUSM =

1 [16pxuxux + 4cMpxux(LogT)x - 4puxux(LogT)x+1
2 [c 2M 2p, (LogT)2 + 2pc2 M 2 (LogT)3 j

(E2 VX)VL = (pxuux)

(E 3 yV)AUSM =

20cMpxuxux + 16c2 (C 2 - -- 1)pu.u(LogT)x+

2pcMuxux(LogT)x - c3 M(3C2 - !-)px(LogT)--

2 pc2 (3C 2 + -!-)u.(LogT)• +pc

(E3 1V)VL = 1 [cMpxuxux + 3CppxujxT + puxuxux],
(D X)VL = (D3V)AUSM + ý- [CPcM(pXTX)X],

where C2 = -•P - 1. In order to avoid the appearance of numerical oscil-
lations corresponding to case 5 or 6, it is better to eliminate the dispersive
error term BVxxx. Although these oscillations are damped by the scheme,
as we have seen in the previous paragraph, it is harmful to drop the scheme
accuracy artificially if this is not necessary Therefore, for cases 1 and 4, we
let X = 0 . Applying conditions (12.7-12.9), we have

•(1) = (1) = 1 if Vi. 5 0 (12.11)

at nodes j - 1, j and j + 1 (case 1) and

2(3) = 0 if Vi. = 0 (12.12)

at node j (case 4).
For cases 2 and 3, as the constraints (12.8-12.9) are already imposed,

we have: X, = 1. Therefore, BVxx does not cancel for these cases. But in
fact, it is possible to eliminate the dispersive term if we use a multi-time
stepping scheme and if we apply different expressions of p at every time step
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(not presented here). From conditions (12.7-12.9) and (12.11-12.12), it is
possible to define an adequate limiter under the form of a triad of limiters,
each adapted to the local variation of the physical quantities. If at node j we
have:

- case 1, we take ([53])

Sif -<r<4
5 - -

1= 2 2 if r > 4 2 (12.13)
2r if 0 < r <

0 if r <0

- cases 2 and 3, we choose

1 if r > 1
i 2 1 (12.14)

Wo1= W2 = W 2r if 0<_r<

0 if r < 0

- case 4, we define

W1 V2 W = = superbee, (12.15)

- cases 5 and 6, V' has to verify only the constraint (12.6). It is easy to see
that the triad (12.13-12.15) verifies this condition.

From (12.13-12.15), X2 = 1 for case 1, X2 = 1 for cases 2 and 3 and X2 = 0

for case 4. If all the components Vi have an isolated extremum at j (case 4)
at the same time, the second-order dissipative error terms vanish. For this
case, EiV, vanishes too. The scheme is then third-order accurate in space.
For the second-order error terms, the main difference between AUSM and
VL splittings is in the expression of terms EjV, . As long as the temperature
gradients are weak, these terms can be neglected. But for reactive flows, their
values become unnegligible and the choice of the splitting becomes impor-
tant. For this kind of flow, it is better to take VL splitting because, with
it, the expressions for EiV, are much simpler and remain the same as those
associated with the supersonic flow. Their values are weaker too. Therefore

Condition 2: when the scheme remains second-order or third-order (cases
1-4), it is recommended to use VL splitting (12.3).

Although simpler with this splitting, the EiV: terms are not automatically
negligible in particular when the temperature variations become high. So, it
is to our advantage to eliminate these terms, which appear as additional
transport terms in the conservation equations:

pt + (pu). + Ax 2 (B 1Vxxx + D1  V x) = O(Ax 3 )

(pu)t + (pu 2 +p)x + (6p6U) + Ax 2 (B 2 V + D2 V =) O(Ax 3)

(pE)t + (puH)x + 6(pH) -u + 6x 2 (3 Vxxx + D 3Vx = O(Ax 3 )
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where
6(pH) = 3Cp~p6T + upp~u + pSufu

and J•Sj represents the variation of Vi on the mesh size Ax. Formally, the
residual error terms can be corrected by adding the opposite value to the
expression for the fluxes. For example, by defining the flux at the interfaces
j + 1 and j - ½ in the following form:

2 (V3 _ 12) + 2 31I) -

j+1/2 = F-(Vj+1 l 2 ) + F+(VjL1/2) - 6QjVj-ll2,

L +c
Vj+ 1 2  c R (Fm + FC ), cLR = c(UL'R),

12[s12
where 6Vj = Vj+ 1/ 2 - Vj-1/2 , the terms EjVx disappear. This correction is
activated only if the scheme remains a second or third-order scheme in space.

12.4 Multi-time stepping algorithm

The analysis of the previous sections was based on the hypothesis of a single
time step. When we use a multi-time stepping scheme, two questions come
to the mind:

- What is the effect of a multi-stepping scheme on the spatial error terms
and on the CFL criterion?

- What is the minimum number of time steps needed to achieve sufficient
accuracy?

For the particular second-order scheme in time:

S= Vi - - y 3- 1 l2 )
V[n+ (1 ± ) =F- 1 /2 )] (12.16)j = E [(Vi + -a(•'j+1/2 P-12

we show that if we choose the same limiters (ýo = s01 = p02 for the predictor
stage and •5 = ý31 = (52 for the corrector one) for each case considered, the
spatial error terms are the same as those generated by a single-time stepping
scheme. But, a more restrictive condition on the CFL number is introduced
in order to the scheme (12.16) verifies (12.6) and remains second-order in
space at a node j where, for one or several components, Vi. = 0 and Vj.. 5 0
(equation 12.7):

ý3(-a) = @3(-1/a) = 0 and b(b) = cD(c) = 2 with a = 1 + 4aFi. /(V.. -
2uFiJ.), 1/a = 1 - 4oFj1/(V/•. + 2aFij.), b = 1 + 2Vj./(Vj.. - 2aFi..),
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c = 1 + 2Vj_/(Vi. + 2oFi..), then

This inequality associated with the classical condition gives a new condi-
tion on the local time step Atjr2Ax AX 1

Atj < amin |3 maX, 2max l where the values of the second deriva-

tives act. Ai represent the eigenvalues of the Jacobian A of F. At has to verify
At < min3 Atj.

For example, with the scalar non-linear equation (inviscid Burgers equa-
tion), the condition on Atj, associated with an extremum (Vx = 0 and

V x i 0), is the most restrictive since I[ji = u and Fj = u and therefore

'At. <A3-2u
This result has not been generalized to a scheme with three-time step-

ping; but it would seem that the spatial error terms would be still the
same with probably, a new condition on the CFL number. Knowing Wttt=

(F 1(F'wWx))xx [54], we can write the condition (ES):

Wt + F. - -do (A3

+ 2 nd order spatial error terms = O(Ax 3 ,At 3).

The time error terms are similar and of the same order as the spatial
error terms when the CFL number is close to unity and, what is essential,
there is theoretically no way of canceling or even controlling them. That is
to say, if we keep this accuracy in time, all the effort devoted to the spatial
discretization in order to control the error terms will become useless. Since all
these terms cannot be eliminated easily (they are still more complicated than
the spatial error terms), it is recommended that a higher order scheme in time
(at least third-order) be applied in order to remove them automatically. The
second-order and, even more, the first-order error terms are then controlled
by the spatial discretization. For example, we can use the third-order scheme
in time defined in [55].

12.5 Applications

In 1-D, the example proposed by Shu and Osher [51] is interesting because it
uses the Euler equations to simulate the interaction between a moving Mach
3 shock and a turbulent flow represented by sine waves in density. The initial
conditions are described as:

- p = 3.857143, u = 2.629369, p = 10.33333 if x < -4,
- p = 1 + 0.2sin5x, u = 0, p = 1. if x> -4.
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As in [51], the CFL number is equal to 0.5 and the final time is t = 1.8. Since
the exact solution for this problem is unknown, the solid line representing
the numerical solution with 1600 cells is assumed to be the exact solution.

Figs. 13.16a, b and c show the solution of the density field with 400
cells and the limiters minmod, superbee, and W = (r + 2)/3, applied sepa-
rately. The limiters minmod and superbee give middling solutions. If AUSM-
VL splittings (12.3-12.4) with the selected triad (12.13-12.15) are applied
(Fig.13.16d), the solution is comparable with that of the third-order ENO
scheme. In particular, the high frequencies are well-represented and the com-
pression waves and the shock are well-captured. If the nodes where (outside
the shock wave) the scheme degenerates to a first-order scheme in space are
plotted (Fig. 13.17), we see that it degenerates, not in the regions of strong
fluctuations but rather in the relatively quiet regions; that is to say, to elim-
inate essentially numerical micro-oscillations.

The second test case is a 2-D axisymmetric supersonic mixing layer. The
inlet conditions are:

- central jet: M = 1.74, p = 8 103 Pa, T = 200 K
- peripheral jet: M = 2., p = 8 103 Pa, T = 580 K.

We solve the Euler equations using a splitting method. The 2-D finite differ-
ence operator is split into a product of simpler operators Un+ 2 = =(LLzLZ L,) U-
where Lr and L, are hyperbolic 1-D difference operators in directions r and z.
The computations have been done on a grid mesh of 351 nodes in z direction
and 93 nodes in r direction. CFL number is equal to 0.5.

Fig. 13.18 a shows an instantaneous view of the temperature field, with
the scheme using AUSM splitting and the limiter W = (r + 2)/3, and Fig.
13.18b shows the same view, with the same time-stepping scheme but using
the conditions 1 and 2 for AUSM-VL splittings and the triad of limiters. The
transitional zone (A) shows a greater sensitivity of the scheme proposed here
to the physical instabilities. We can also see the very weak diffusion of the
scheme in the shear layer. In the growth of the large eddies (B), the mixing
in the core of the eddies is more detailed with the method presented here.

12.6 Summary

This section shows it is possible to improve the accuracy of TVD-MUSCL
approach if:

- the accuracy in time is greater than the accuracy in space,

- the non-linear functions W are expressed in a triad (13-15) taking into
account the local variations of each quantity,

- AUSM splitting (12.4) is used when the scheme degenerates into a first-
order, and VL splitting (12.3) is applied when the scheme remains second
or third-order.
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Adding to the basic well-known avantages of the algorithm proposed herein,
the good accuracy of the numerical solution opens new perspectives for TVD-
MUSCL schemes. In particular, Large Eddy Simulations (LES) and Direct
Numerical Simulations, already performed with this approach in [56],[57],
[58], [60] for example, now seem to come within the field of application of
these schemes. Algorithmically, the correction proposed herein is easily to
implement and the additional time consuming is very small. The new encod-
ing for the W-triad is written in annex B. New improvements are possible
by using different expressions of W at each time step of the time integration.
Simulations of freely decaying isotropic turbulence to evaluate the reliability
of this scheme in LES and a study of first-order and second-order scheme
stability are performing.

13 Conclusion

We have presented some high order numerical schemes, mainly of the ENO
type, that are able to procude very good numerical results. We have also
considered the efficiency issue, in term of CPU cost. Realistic example have
been considered.
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Illoglo hiIL errori r7
-1.36 -3.58 -
-1.48 -3.83 2.3 (a)
-1.66 -4.30 2.6
-1.77 -4.56 3.7

Illogi 0 hlL' errorI ro 11

-1.18 -3.12 -
-1.48 -3.83 2.36(b
-1.79 -4.75 3.06
-2.09 -5.71 3.201
-2.39 -6.60 2.96 J

Table 13.1. loglo of L' for (6.1)

Ifunctionj E j error (L7) error (LT)

fj 10-2 13.67 2.21 10- 1.11 10--
10-3 3.31 8.67 10-4 1.04 10-4

10-4 1.17 7.05 10-5 3.37 10-6

12 10- 2.65 2.15 10-2 6.48 10-
10-3 1.50 9.17 10-4 6.61 10-'
10-4 1.02 6.97 10- 5 5.27 10-7

Table 13.2. Results for the agglomeration procedure on the domain with holes.

log10 h -1.18 -1.48 -1.79 -2.09 -2.39 -2.69
x=0.4 -2.04 -3.60 -4.26 -5.17 -6.08 -6.96
rc - 5.20 2.2 3.03 3.03 2.93
x=0.2 -3.22 -3.64 -4.48 -5.36 -6.26 -7.15
rC - 1.4 2.8 2.93 3.0 2.96
x=0.1 -0.59 -2.91 -3.83 -4.74 -5.64 -6.55
rc - 7.73 3.06 3.03 3.0 3.03
x=0.0 -0.93 -1.24 -1.54 -1.84 -2.14 -2.44
rc - 1.03 1.0 1.0 1.0 1.0
x=-0.2 -2.66 -3.69 -4.49 -5.35 -6.23 -7.13
rc - 3.43 2.66 2.86 2.93 3.0
x=-0.5 -2.76 -3.68 -4.60 -5.71 -6.41 -7.24
rc - 3.06 3.06 3.7 2.33 2.76
x--0.75 -2.62 -4.05 -4.87 -5.83 -6.68 -7.86
rc - 4.76 2.73 3.2 2.83 3.93

Table 13.3. Nodal errors for (6.2)-(6.3)
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k

3.1

Fig. 13.1. Elements of the triangulation and the dual mesh

y

l -- --

"I I

0 0 Xl x

Fig. 13.2. Covering of the rectangle [xo, xj] x [yo, yi] by triangular control volumes

Fig. 13.3. Stencils for third order reconstruction
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Fig. 13.4. Zoom of a typical mesh, 4545 nodes, 8848 triangles

(A) (B)

Fig. 13.5. Reconstructed function (A) and exact function (B)
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(A)

(B)

Fig. 13.6. Density for M = 5.5 and 0 = 30', (A):second order scheme, (B): third
order scheme
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Fig. 13.7. Different types of stencils for quadratic reconstruction.
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Fig. 13.8. Mesh for M 5.5 and 0 45'
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e03

Fig. 13.9. Density for M = 5.5 and 0 = 450, (A) : first order, (B) second order,
(C): third order. Zoom around the triple point

A2  C

AT

Fig. 13.10. The stencil for the reconstruction.



60 R~mi Abgrall et al.

Fig. 13.11. Encoding/Decoding procedure: Fine, medium and coarse discretiza-
tions and the truncated scale coefficients.

Fig. 13.12. 40 Isolines of the Mach number
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Q

Fig. 13.13. Isolines of the error sensor

F ase 4

case 6-.

j-2 j- j+l j+

Fig. 13.14. Different evolutions of W.



62 R6mi Abgrall et al.

-Al l/ -A12/ro -A13 IMr
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d eef
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Fig. 13.15. Evolution of the first-order error terms.

A Details of (36)

The detailed expression of (37) for each equation is written:

A.1 Continuity equation

Pt + (PU)x + ,AX2 fX6{(cMPXXX + pu3X3X) + Xz (pxux)X

32(oT2 [-(3pux + cMp.) + 2pcM(LogT)x]Iausm.}

S(,Ax 
3 )
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p p
4 -4

3- 3

2 
3

-5 -3 -1 3 5 -5 -3 - 1 3 5
a. Density, AUSM and mdnmod b. Density, AUSM and Superbee

p p
4 4

3 3

2 2

-5 -3 -l 3 5 0.5 -3 -1 3 a
c. Density, AUSM and phi=(r+2)/3 d. Density, AUSM-VL and phi-triad

Fig. 13.16. Moving shock in a sinusoidal density field.

5

3

2 0 first order

-aecond-order

-5 -3 -1 1 3 5

Fig. 13.17. Location of degeneration into first-order.
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a

Fig. 13.18. Instantaneous temperature field in a supersonic jet.

A.2 Momentum equation

(pu)t ± (pu 2 + p).

+,AX 2 {'ý, [C2(M2 + I~~x+ 2pcMuxxx + pRTxx]

+122 [2cM(pxux)x + p(uxux,)x + R(p.Tx)x]

+( -2 + lLPuu

+ (Lo9T), [4cMpxux - 4puxux + C2M 2 px(LogT)x

+2pC2 M 2 (LogT)2]IaUsm

- (,Ax 3 )
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A.3 Energy equation

(pE)t + (puH).

+Ax2 { 1L-[c3MM(-- + C2 )pxx.
(3M' + C2)ux. + PC2C3MTI

+ IC2( _I~' + C 2 )(p.ux)x + 3PM(UU~ + PC2C
2 (uXTX)]

+, [CpcM(oxTXlX]I"I

S+ + )CMP UU + (CPP + T +

+ (LogT). [16C2 (C2 - + 2pcupux32-p 4 + 2pcMuxux

-c 3M(3C 2 - !M!)px(LogT)x - pc2(3C2 + -1-)ux(LogT)x

+- pc3 M 3 (LogT)2]Iausm }

= O(Ax 3 )

where Iausm = 1 and Ij = 0 for AUSM splitting, and Iausm = 0 and
Iv, = 1 for VL splitting.

B A piece of code

For cases 1-4, the calculation of the right- and left-values of U (MUSCL
approach) is done. The lines written with the capital letters already exist in
codes with the classical limiters. The ten lines written with the small letters
correspond with the adding of the triad of limiters. The writing is very simple
and the additional consuming time for a complete code is very small.

c The right and left values are calculated as
C follows
C

c UR(L+1/2)=U(L+1)-PHI(1/R(L+1))
c *(U(L+1)-U(L) )
C

c UL(L+1/2)=U(L) +PHI(R(L))
c *(U(L+1)-U(L) )
C
c R(L)=( U(L)-U(L-1) )/( U(L+1)-U(L) )
C
c if R <= 0
C PHI(R)=0
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C if R>O
c PHI(R)= ( (1-ETA)* MIN( R, (3-ETA)/(1-ETA))
c + (I+ETA) *

c MIN( 1, (3-ETA)*R/(1-ETA)) )/4
c

c DELSIGN(L) = sign of variation U(L+i)-U(L)
c (+1 if U(L+i)-U(L)=O)
c

c if is1234=1 and is23=I we have case 1
c if is1234=0 and is23 we have cases 2 and 3
c if is1234=0 and is23=0 we have case 4
c
c case 1 PHI(R)=(R+2)/3 if 2/5 < R < 4
c 2 if R>4
c 2*R if O<R<2/5
c
c case 2 and 3 PHI(R)=1 if R>i/2
c 2*R if 0 < R< 1/2
c
c case 4 PHI(R)= SUPERBEECR)
c
c ************* Phi-triad *************

DO L = 1, LMAX-1

DELU(L) = U (L+1) - U (L)

DELSIGN(L) = SIGN (I., DELU(L))

ENDDO

DO L = 3, LMAX-2

DEL = DELU (L) - DELU (L-i)

c*** automatic choice of the limiter ***

etasbee = dim(sign(l., del), 0.)
- dim(O., sign(l., del))

isl = delsign (L-2)

is2 = delsign (L-i)

is3 = delsign (L )
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is4 = delsign CL+i)

is1234 = abs (isl+is2+is3+is4) /A

eta13 =is1234 / 3. + CI-isi234)

is23 i abs Cis2+is3) /2

etaCL) =etai3 * is23 + etasbee * Ci-is23)

omega =is23 *(3. -etaCL))

(1C. -etaCL)) + 2.* (i-is23)

A = DELU CL )*DELSIGN CL-i)

B = DELU CL-i) *DELSIGN CL)

ABMIN = MIN CA,OMEGA*B)

DELUP CL = MAXCO.,ABMIN) * DELSIGN CL)

ABMIN = MIN CB,OMEGA*A)

DELUM CL) = MAXCO.,ABMIN) * DELSIGN CL-i)

ENDDO

c*U-right and U-left at the interf ace L+1/2*

DO L = 3 , LMAX-3

UP. CL = U CL+1)
- O.25*C CI.-ETA (L+i))* DELUP CL+i)
+ Ci.+ETA CL+i))*DELUM (L+1))

UL CL) = U CL )
+ O.25*C CI.-ETA CL))* DELUM CL
+ Ci.+ETA CL))* DELUPCL))

ENDDO
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Abstract. We present and analyze the Runge Kutta Discontinuous Galerkin method
for numerically solving nonlinear hyperbolic systems. The basic method is then ex-
tended to convection-dominated problems yielding the Local Discontinuous Galerkin
method. These methods are particularly attractive since they achieve formal high-
order accuracy, nonlinear stability, and high parallelizability while maintaining the
ability to handle complicated geometries and capture the discontinuities or strong
gradients of the exact solution without producing spurious oscillations. The dis-
cussed methods are readily applied to the Euler equations of gas dynamics, the
shallow water equations, the equations of magneto-hydrodynamics, the compress-
ible Navier-Stokes equations with high Reynolds numbers, and the equations of
the hydrodynamic model for semiconductor device simulation. As a final example,
consideration is given to the application of the discontinuous Galerkin method to
the Hamilton-Jacobi equations.
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1 Introduction

1.1 The purpose of these notes

In these notes, we study the Runge Kutta Discontinuous Galerkin method for nu-
merically solving nonlinear hyperbolic systems and its extension for convection-
dominated problems, the so-called Local Discontinuous Galerkin method. Examples
of problems to which these methods can be applied are the Euler equations of gas dy-
namics, the shallow water equations, the equations of magneto-hydrodynamics, the
compressible Navier-Stokes equations with high Reynolds numbers, and the equa-
tions of the hydrodynamic model for semiconductor device simulation; applications
to Hamilton-Jacobi equations is another important example. The main features
that make the methods under consideration attractive are their formal high-order
accuracy, their nonlinear stability, their high parallelizability, their ability to handle
complicated geometries, and their ability to capture the discontinuities or strong
gradients of the exact solution without producing spurious oscillations. The pur-
pose of these notes is to provide a short introduction to the devising and analysis
of these discontinuous Galerkin methods. Most of the material of these notes has
been presented in [17].

Acknowledgements The author would like to thank T.J. Barth for the invi-
tation to give a series of lectures in the NATO special course on ' Higher Order
Discretization Methods in Computational Fluid Dynamics,' the material of which
is contained in these notes. He would also like to thank F. Bassi and S. Rebay, and
I. Lomtev and G. Karniadakis for kindly suplying several of their figures, and to C.
Hu and Chi-Wang Shu for provinding their material on Hamilton-Jacobi equations.
Thanks are also due to Rosario Grau for fruitful discussions concerning the numeri-
cal experiments of Chapter 2, to J.X. Yang for a careful proof-reading the appendix
of Chapter 6, and to A. Zhou for bringing the author's attention to several of his
papers concerning the discontinuous Galerkin method.

1.2 A historical overview

The original Discontinuous Galerkin method The original discontinuous
Galerkin (DG) finite element method was introduced by Reed and Hill [76] for
solving the neutron transport equation

a u + div("u) = I,

where a is a real number and U a constant vector. A remarkable advantage of this
method is that, because of the linear nature of the equation, the approximate solu-
tion can be computed element by element when the elements are suitably ordered
according to the characteristic direction.

LeSaint and Raviart [58] made the first analysis of this method and proved a
rate of convergence of (Ax)k for general triangulations and of (Ax)k+l for Cartesian
grids. Later, Johnson and Pitkariinta [52] proved a rate of convergence of (Ax)k+ 11 2

for general triangulations and Peterson [75] numerically confirmed this rate to be
optimal. Richter [77] obtained the optimal rate of convergence of (Ax)""' for some
structured two-dimensional non-Cartesian grids. In all the above papers, the exact
solution is assumed to be very smooth. The case in which the solution admits dis-
continuities was treated by Lin and Zhou [60] who proved the convergence of the
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method. The issue of the interrelation between the mesh and the order of conver-
gence of the method was explored by Zhou and Lin [93], case k = 1, and later by
Lin, Yan, and Zhou [59], case k = 0, and optimal error estimates were proven under
suitable assumptions on the mesh. Recently, several new results have been obtained.
Thus, Falk and Richter [39] obtained a rate of convergence of (Ax)'+l/ 2 for general
triangulations for Friedrich systems; Houston, Schwab and Siili [42] analyzed the
hp version of the discontinuous Galerkin method and showed its exponential con-
vergence when the solution is piecewise analytic; and, finally, Cockburn, Luskin,
Shu, and Siili [22] showed how to exploit the translation invariance of a grid to
double the order of convergence of the method by a simple, local postprocessing of
the approximate solution.

Nonlinear hyperbolic systems: The RKDG method The success of this
method for linear equations, prompted several authors to try to extend the method
to nonlinear hyperbolic conservation laws

d

ut + Z(f(u))x = 0,
i=1

equipped with suitable initial or initial-boundary conditions. However, the intro-
duction of the nonlinearity prevents the element-by-element computation of the
solution. The scheme defines a nonlinear system of equations that must be solved
all at once and this renders it computationally very inefficient for hyperbolic prob-
lems.

e The one-dimensional scalar conservation law.
To avoid this difficulty, Chavent and Salzano [13] constructed an explicit version

of the DG method in the one-dimensional scalar conservation law. To do that, they
discretized in space by using the DG method with piecewise linear elements and
then discretized in time by using the simple Euler forward method. Although the
resulting scheme is explicit, the classical von Neumann analysis shows that it is
unconditionally unstable when the ratio 'A is held constant; it is stable if is of
order V/A--, which is a very restrictive condition for hyperbolic problems.

To improve the stability of the scheme, Chavent and Cockburn [12] modified
the scheme by introducing a suitably defined 'slope limiter' following the ideas
introduced by van Leer in [88]. They thus obtained a scheme that was proven to
be total variation diminishing in the means (TVDM) and total variation bounded
(TVB) under a fixed CFL number, f' A-, that can be chosen to be less than or equal¥,d
to 1/2. Convergence of a subsequence is thus guaranteed, and the numerical results
given in [12] indicate convergence to the correct entropy solutions. However, the
scheme is only first order accurate in time and the 'slope limiter' has to balance the
spurious oscillations in smooth regions caused by linear instability, hence adversely
affecting the quality of the approximation in these regions.

These difficulties were overcome by Cockburn and Shu in [26], where the first
Runge Kutta Discontinuous Galerkin (RKDG) method was introduced. This method
was constructed (i) by retaining the piecewise linear DG method for the space dis-
cretization, (ii) by using a special explicit TVD second order Runge-Kutta type
discretization introduced by Shu and Osher in a finite difference framework [80],
[81], and (iii) by modifying the 'slope limiter' to maintain the formal accuracy of the
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scheme extrema. The resulting explicit scheme was then proven linearly stable for
CFL numbers less than 1/3, formally uniformly second order accurate in space and
time including at extrema, and TVBM. Numerical results in [26] indicate good con-
vergence behavior: Second order in smooth regions including extrema, sharp shock
transitions (usually in one or two elements) without oscillations, and convergence
to entropy solutions even for non convex fluxes.

In [24], Cockburn and Shu extended this approach to construct (formally) high-
order accurate RKDG methods for the scalar conservation law. To device RKDG
methods of order k + 1, they used (i) the DG method with polynomials of de-
gree k for the space discretization, (ii) a TVD (k + 1)-th order accurate explicit
time discretization, and (iii) a generalized 'slope limiter.' The generalized 'slope
limiter' was carefully devised with the purpose of enforcing the TVDM property
without destroying the accuracy of the scheme. The numerical results in [24], for
k = 1, 2, indicate (k + 1)-th order order in smooth regions away from discontinuities
as well as sharp shock transitions with no oscillations; convergence to the entropy
solutions was observed in all the tests. These RKDG schemes were extended to
one-dimensional systems in [21].

e The multidimensional case.

The extension of the RKDG method to the multidimensional case was done in
[20] for the scalar conservation law. In the multidimensional case, the complicated
geometry the spatial domain might have in practical applications can be easily
handled by the DG space discretization. The TVD time discretizations remain the
same, of course. Only the construction of the generalized 'slope limiter' represents a
serious challenge. This is so, not only because of the more complicated form of the
elements but also because of inherent accuracy barriers imposed by the stability
properties.

Indeed, since the main purpose of the 'slope limiter' is to enforce the nonlin-
ear stability of the scheme, it is essential to realize that in the multidimensional
case, the constraints imposed by the stability of a scheme on its accuracy are even
greater than in the one dimensional case. Although in the one dimensional case it is
possible to devise high-order accurate schemes with the TVD property, this is not
so in several space dimensions since Goodman and LeVeque [41] proved that any
TVD scheme is at most first order accurate. Thus, any generalized 'slope limiter'
that enforces the TVD property, or the TVDM property for that matter, would
unavoidably reduce the accuracy of the scheme to first-order accuracy. This is why
in [20], Cockburn, Hou and Shu devised a generalized 'slope limiter' that enforced
a local maximum principle only since they are not incompatible with high-order
accuracy. No other class of schemes has a proven maximum principle for general
nonlinearities f and arbitrary triangulations.

The extension of the RKDG methods to general multidimensional systems was
started by Cockburn and Shu in [25] and has been recently completed in [28]. Bey
and Oden [10], Bassi and Rebay [4], and more recently Baumann [6] and Bau-
mann and Oden [9] have studied applications of the method to the Euler equa-
tions of gas dynamics. Recently, Kershaw et al. [56], from the Lawrence Livermore
National Laboratory, extended the method to arbitrary Lagrangian-Eulerian fluid
flows where the computational mesh can move to track the interface between the
different material species.

* The main advantages of the RKDG method.
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The resulting RKDG schemes have several important advantages. First, like
finite element methods such as the SUPG-method of Hughes and Brook [44], [49],
[45], [46], [47], [48] (which has been analyzed by Johnson et al. in [53], [54], [55]),
the RKDG methods axe better suited than finite difference methods to handle
complicated geometries. Moreover, the particular finite elements of the DG space
discretization allow an extremely simple treatment of the boundary conditions; no
special numerical treatment of them is required in order to achieve uniform high
order accuracy, as is the case for the finite difference schemes.

Second, the method can easily handle adaptivity strategies since the refining
or unrefining of the grid can be done without taking into account the continuity
restrictions typical of conforming finite element methods. Also, the degree of the
approximating polynomial can be easily changed from one element to the other.
Adaptivity is of particular importance in hyperbolic problems given the complexity
of the structure of the discontinuities. In the one dimensional case the Riemann
problem can be solved in closed form and discontinuity curves in the (x, t) plane are
simple straight lines passing through the origin. However, in two dimensions their
solutions display a very rich structure; see the works of Wagner [90], Lindquist
[62], [61], Tong and Zheng [86], and Tong and Chen [85]. Thus, methods which
allow triangulations that can be easily adapted to resolve this structure, have an
important advantage.

Third, the method is highly parallelizable. Since the elements are discontinuous,
the mass matrix is block diagonal and since the order of the blocks is equal to the
number of degrees of freedom inside the corresponding elements, the blocks can
be inverted by hand once and for all. Thus, at each Runge-Kutta inner step, to
update the degrees of freedom inside a given element, only the degrees of freedom
of the elements sharing a face are involved; communication between processors is
thus kept to a minimum. Extensive studies of adaptivity and parallelizability issues
of the RKDG method have been performed by Biswas, Devine, and Flaherty [11],
Devine, Flaherty, Loy, and Wheat [32], Devine and Flaherty [31], and more recently
by Flaherty et al. [40]. Studies of load balancing related to conservation laws but
not restricted to them can be found in the works by Devine, Flaherty, Wheat, and
Maccabe [33], by deCougny et al. [30], and by Ozturan et al. [74].

Convection-diffusion systems: The LDG method The first extensions of
the RKDG method to nonlinear, convection-diffusion systems of the form

Otu + V F(u, D u) = 0, in (0, T) x S2,

were proposed by Chen et al. [15], [14] in the framework of hydrodynamic models
for semiconductor device simulation. In these extensions, approximations of second
and third-order derivatives of the discontinuous approximate solution were obtained
by using simple projections into suitable finite elements spaces. This projection
requires the inversion of global mass matrices, which in [15] and [14] were 'lumped'
in order to maintain the high parallelizability of the method. Since in [15] and
[14] polynomials of degree one axe used, the 'mass lumping' is justified; however, if
polynomials of higher degree were used, the 'mass lumping' needed to enforce the
full parallelizability of the method could cause a degradation of the formal order of
accuracy.

Fortunately, this is not an issue with the methods proposed by Bassi and Rebay
[3] (see also Bassi et al [4]) for the compressible Navier-Stokes equations. In these
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methods, the original idea of the RKDG method is applied to both u and D u which
are now considered as independent unknowns. Like the RKDG methods, the result-
ing methods are highly parallelizable methods of high-order accuracy which are
very efficient for time-dependent, convection-dominated flows. The LDG methods
considered by Cockburn and Shu [27] are a generalization of these methods.

The basic idea to construct the LDG methods is to suitably rewrite the original
system as a larger, degenerate, first-order system and then discretize it by the
RKDG method. By a careful choice of this rewriting, nonlinear stability can be
achieved even without slope limiters, just as the RKDG method in the purely
hyperbolic case; see Jiang and Shu [51]. Moreover, error estimates (in the linear
case) have been obtained in [27]. A recent analysis of this method is currently
being carried out by Cockburn and Schwab [23] in the one dimensional case by
taking into account the characterization of the viscous boundary layer of the exact
solution.

The LDG methods [27] are very different from the so-called Discontinuous
Galerkin (DG) method for parabolic problems introduced by Jamet [50] and stud-
ied by Eriksson, Johnson, and Thom&e [38], Eriksson and Johnson [34], [35], [36],
[37], and more recently by Makridakis and Babu~ka [68]. In the DG method, the
approximate solution is discontinuous only in time, not in space; in fact, the space
discretization is the standard Galerkin discretization with continuous finite ele-
ments. This is in strong contrast with the space discretizations of the LDG methods
which use discontinuous finite elements. To emphasize this difference, those meth-
ods are called Local Discontinuous Galerkin methods. The large amount of degrees
of freedom and the restrictive conditions of the size of the time step for explicit
time-discretizations, render the LDG methods inefficient for diffusion-dominated
problems; in this situation, the use of methods with continuous-in-space approx-
imate solutions is recommended. However, as for the successful RKDG methods
for purely hyperbolic problems, the extremely local domain of dependency of the
LDG methods allows a very efficient parallelization that by far compensates for
the extra amount of degrees of freedom in the case of convection-dominated flows.
Karniadakis et al. have implemented and tested these methods for the compressible
Navier Stokes equations in two and three space dimensions with impressive results;
see [64], [65], [63], [66], and [91].

Another technique to discretize the diffusion terms have been proposed by Bau-
mann [6]. The one-dimensional case was studied by Babu~ka, Baumann, and J.T.
Oden [2] and the multidimensional case has been considered by Oden, Babu§ka,
and Baumann [70]. The case of convection-diffusion in multidimensions was treated
by Baumann and Oden in [7]. In [8], Baumann and Oden consider applications to
the Navier-Stokes equations.

Finally, let us point bring the attention of the reader to the non-conforming
staggered-grid Chebyshev spectral multidomain numerical method for the solution
of the compressible Navier-Stokes equations proposed and studied by Kopriva [57];
this method is strongly related to discontinuous Galerkin methods.

1.3 The content of these notes

In these notes, we study the RKDG and LDG methods. Our exposition will be
based on the papers by Cockburn and Shu [26], [24], [21], [20], and [28] in which
the RKDG method was developed and on the paper by Cockburn and Shu [27]
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which is devoted to the LDG methods. We also include numerical results from the
papers by Bassi and Rebay [4] and by Warburton, Lomtev, Kirby and Karniadakis
[91] on the Euler equations of gas dynamics and from the papers by Bassi and
Rebay [3] and by Lomtev and Karniadakis [63] on the compressible Navier-Stokes
equations. Finally, we also use the material contained in the paper by Hu and Shu
[43] in which the application of the RKDG method is extended to Hamilton-Jacobi
equations.

The emphasis in these notes is on how the above mentioned schemes were de-
vised. As a consequence, the chapters that follow reflect that development. Thus,
Chapter 2, in which the RKDG schemes for the one-dimensional scalar conserva-
tion law are constructed, constitutes the core of the notes because it contains all
the important ideas for the devising of the RKDG methods; chapter 3 contains its
extension to one-dimensional Hamilton-Jacobi equations. In chapter 4, we extend
the RKDG method to multidimensional systems and in Chapter 5, to multidimen-
sional Hamilton-Jacobi equations. Finally, in chapter 6 we study the extension to
convection-diffusion problems.

We would like to emphasize that the guiding principle in the devising of the
RKDG methods for scalar conservation laws is to consider them as perturbations
of the so-called monotone schemes. As it is well-known, monotone schemes for
scalar conservation laws are stable and converge to the entropy solution but are
only first-order accurate. Following a widespread approach in the field of numerical
schemes for nonlinear conservation laws, the RKDG are constructed in such a way
that they are high-order accurate schemes that 'become' a monotone scheme when
a piecewise-constant approximation is used. Thus, to obtain high-order accurate
RKDG schemes, we 'perturb' the piecewise-constant approximation and allow it to
be piecewise a polynomial of arbitrary degree. Then, the conditions under which
the stability properties of the monotone schemes are still valid are sought and en-
forced by means of the generalized 'slope limiter.' The fact that it is possible to do
so without destroying the accuracy of the RKDG method is the crucial point that
makes this method both robust and accurate.

The issues of parallelization and adaptivity developed by Biswas, Devine, and
Flaherty [11], Devine, Flaherty, Loy, and Wheat [32], Devine and Flaherty [31], and
by Flaherty et al. [40] (see also the works by Devine, Flaherty, Whea, and Mac-
cabe [33], by deCougny et al. [30], and by Ozturan et al. [74]) are certainly very
important. Another issue of importance is how to render the method computa-
tionally more efficient, like the quadrature rule-free versions of the RKDG method
recently studied by Atkins and Shu [1]. However, these topics fall beyond the scope
of these notes whose main intention is to provide a simple introduction to the topic
of discontinuous Galerkin methods for convection-dominated problems.
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2 The scalar conservation law in one space dimension

2.1 Introduction

In this section, we introduce and study the RKDG method for the following simple
model problem:

ut + f(u). = 0, in (0,1) x (0,T), (2.1)

u(x, 0) = uo(x), V x E (0, 1), (2.2)

and periodic boundary conditions. This section has material drawn from [26] and
[24].

2.2 The discontinuous Galerkin-space discretization

The weak formulation To discretize in space, we proceed as follows. For each
partition of the interval (0, 1), f Xj+1/2 }=0O, we set Ij = (xj-11 2 ,xj+1/2), A2 =

Xj+1/2 - xj-11 2 ,for j = 1, ... , N, and denote the quantity maxl,<j:5 Aj by Ax.
We seek an approximation uh to u such that for each time t E [0, T], Uh(t)

belongs to the finite dimensional space

Vh=Vhk={vEnL(0, 1): vji, EPk(Ij), j=1,...,N}, (2.3)

where Pk (I) denotes the space of polynomials in I of degree at most k. In order to
determine the approximate solution Uh, we use a weak formulation that we obtain
as follows. First, we multiply the equations (2.1) and (2.2) by arbitrary, smooth
functions v and integrate over Ij, and get, after a simple formal integration by
parts,

fj Otu(x,t)v(x)dx- j f(u(x,t)),.v(x)dx

±f(U(xj+112, t)) V(X9+ 112) - f(U(Xj- 1 2, t)) V(xtl/ 2) = 0, (2.4)

fji u(x,0) v(x)dx = 4 uo(x) v(x) dx. (2.5)

Next, we replace the smooth functions v by test functions Vh belonging to the finite
element space Vh, and the exact solution u by the approximate solution Uh. Since
the function uh is discontinuous at the points Xj+ 1 1 2 , we must also replace the
nonlinear 'flux' f(u(xj+1/ 2,t)) by a numerical 'flux' that depends on the two values
of Uh at the point (xj+1/2 , t), that is, by the function

h(u)j+1/2 (t) = h(u(x-+1/ 2, t), u(x++1 / 2, t)), (2.6)

that will be suitably chosen later. Note that we always use the same numerical flux
regardless of the form of the finite element space. Thus, the approximate solution
given by the DG-space discretization is defined as the solution of the following weak
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formulation:

V j = 1,...,N, V Vh G Pk(ij):

j Ot Uh(Xt) vh(x)dx - j f(Uh(X,t))OxVh(x)dx

+h(uh)j+l/2(t) Vh(X•+ 1l 2 ) - h(uh))j-1/ 2 (t) Vh(X+L/ 2 ) = 0, (2.7)

fj Uh(X,0) Vh(X)dx = Uo(X) Vh(x) dx. (2.8)

Incorporating the monotone numerical fluxes To complete the definition
of the approximate solution Uh, it only remains to choose the numerical flux h. To
do that, we invoke our main point of view, namely, that we want to construct
schemes that are perturbations of the so-called monotone schemes. The idea is that
by perturbing the monotone schemes, we would achieve high-order accuracy while
keeping their stability and convergence properties. Thus, we want that in the case
k = 0, that is, when the approximate solution Uh is a piecewise-constant function,
our DG-space discretization gives rise to a monotone scheme.

Since in this case, for x E Ij we can write

Uh(X,t) = UO,

we can rewrite our weak formulation (2.7), (2.8) as follows:

V j=I,..N:

Ot q(t) + {h(uj°(t),uo+• (t)) - h(uq,°(t), q(t))}/A- = 0,

U 1(0) = uo(x) dx,

and it is well-known that this defines a monotone scheme if h(a, b) is a Lipschitz,
consistent, monotone flux, that is, if it is,

(i) locally Lipschitz and consistent with the flux f(u), i.e., h(u, u) = .(u),
(ii) a nondecreasing function of its first argument, and

(iii) a nonincreasing function of its second argument.

The best-known examples of numerical fluxes satisfying the above properties are
the following:

(i) The Godunov flux:

G ( mina<u<b f(u), if a < bhG (a, b)=

lmaxb<.<a f(u), otherwise.

(ii) The Engquist-Osher flux:

hEO(a, b) = min(f'(s), 0) ds + La max(f '(s), 0) ds + f(0);
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(iii) The Lax-Friedrichs flux:

hLF(a, b) = [f(a) + f(b) -C (b -a)],

C max If(s)I;
inf uO (x)<s<sup uO (x)

(iv) The local Lax-Friedrichs flux:

hLLF(a,b) = [f(a) + f(b) - C(b - a)],

C max If'(s)I;
min(a,b)<_s<max(a,b)

(v) The Roe flux with 'entropy fix':

ff(a) if f'(u) > 0 for u E [min(a,b), max(a,b)],

hR(a,b) = f(b) if f'(u) < 0 for u E [min(a,b),max(a,b)],

1hLLF (a, b) otherwise.

For the flux h, we can use the Godunov flux hG since it is well-known that this
is the numerical flux that produces the smallest amount of artificial viscosity. The
local Lax-Friedrichs flux produces more artificial viscosity than the Godunov flux,
but their performances are remarkably similar. Of course, if f is too complicated, we
can always use the Lax-Friedrichs flux. However, numerical experience suggests that
as the degree k of the approximate solution increases, the choice of the numerical
flux does not have a significant impact on the quality of the approximations.

Diagonalizing the mass matrix If we choose the Legendre polynomials P1
as local basis functions, we can exploit their L2-orthogonality, namely,P1

] Pt(s) P1, (s)ds- (• 2 611,

to obtain a diagonal mass matrix. Indeed, if, for x E I', we express our approximate
solution Uh as follows:

k

to
1=0

where

Wjt(x) -- Pj(2 (x - xj)/.Aj),

the weak formulation (2.7), (2.8) takes the following simple form:

V j =1,...,N and f= 0,...,k :

( O t(t - 1 f f(Uh (X, t)) 0. Wj (x) dx

+ 1--- h(uh(xj+/2))(t)--(-1)' h(uh(xj-1/ 2 ))(t)}= 0,

ui(0) - +1J uo(x) Wt(x) dx,A7
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where we have use the following properties of the Legendre polynomials:

P(1) = 1, P 1(-1) = (-1Y.

This shows that after discretizing in space the problem (2.1), (2.2) by the DG
method, we obtain a system of ODEs for the degrees of freedom that we can rewrite
as follows:

d
dT Uh = Lh(Uh), in (0, T), (2.9)

Uh(t = 0) = ?oh. (2.10)

The element Lh(Uh) of Vh is, of course, the approximation to -f(u): provided by
the DG-space discretization.

Note that if we choose a different local basis, the local mass matrix could be a
full matrix but it will always be a matrix of order (k + 1). By inverting it by means
of a symbolic manipulator, we can always write the equations for the degrees of
freedom of Uh as an ODE system of the form above.

Convergence analysis of the linear case In the linear case f(u) = cu, the
L- (0, T; L 2(0, 1))-accuracy of the method (2.7), (2.8) can be established by using
the L' (0, T; L 2(0, 1))-stability of the method and the approximation properties of
the finite element space Vh.

Note that in this case, all the fluxes displayed in the examples above coincide
and are equal to

h(a,b) =ca _ 2 l i(b - a). (2.11)
2 2

The following results are thus for this numerical flux.
We state the L2-stability result in terms of the jumps of uh across Xy+112 which

we denote by

[Uh ]j+1/2 Uh(Xj+l/ 2 ) - Uh(X-+1/ 2 ).

Proposition 1. (L2-stability) We have,

11 Uh(T) I1L2(O,1 + eT(Uh ) < I U0 112 2

where

eT(Uh) = 2 Lo Z _<j<N [Uh(t) •+/2 dt"

Note how the jumps of Uh are controlled by the L2-norm of the initial condition.
This control reflects the subtle built-in dissipation mechanism of the DG-methods
and is what allows the DG-methods to be more accurate than the standard Galerkin
methods. Indeed, the standard Galerkin method has an order of accuracy equal to
k whereas the DG-methods have an order of accuracy equal to k + 1/2 for the same
smoothness of the initial condition.
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Theorem 2. (First L2-error estimate) Suppose that the initial condition uo belongs
to Hk+l (0, 1). Let e be the approximation error u - Uh. Then we have,

II e(T) IIL(o, 1) _ C Iuo IH+(O,1)(0 AX)1) /,

where C depends solely on k, I c 1, and T.

It is also possible to prove the following result if we assume that the initial
condition is more regular. Indeed, we have the following result.

Theorem 3. (Second L2-error estimate) Suppose that the initial condition uo be-
longs to Hk+ 2 (0, 1). Let e be the approximation error u - Uh. Then we have,

II e(T) IIL2(o,1) _< ClI UO IHk+2(O,1)(Ax)k+1,

where C depends solely on k, I c , and T.

Theorem 2 is a simplified version of a more general result proven in 1986 by
Johnson and Pitkiiranta [52] and Theorem 3 is a simplified version of a more general
result proven in 1974 by LeSaint and Raviaxt [58]. To provide a simple introduction
to the techniques used in these general results, we give new proofs of Theorems 2
and 3 in an appendix to this chapter.

The above theorems show that the DG-space discretization results in a (k± 1)th-
order accurate scheme, at least in the linear case. This gives a strong indication
that the same order of accuracy should hold in the nonlinear case when the exact
solution is smooth enough, of course.

Now that we know that the DG-space discretization produces a high-order ac-
curate scheme for smooth exact solutions, we consider the question of how does it
behave when the flux is a nonlinear function.

Convergence analysis in the nonlinear case To study the convergence
properties of the DG-method, we first study the convergence properties of the so-
lution w of the following problem:

wt + f(w). = (v(w) W.)., (2.12)

w(., 0) Uo('), (2.13)

and periodic boundary conditions. We then mimic the procedure to study the
convergence of the DG-method for the piecewise-constant case. The general DG-
method will be considered later after having introduced the Runge-Kutta time-
discretization.

The continuous case as a model. In order to compare u and w, it is enough
to have (i) an entropy inequality and (ii) uniform boundedness of 1w [[ILI(0,1).

Next, we show how to obtain these properties in a formal way.
We start with the entropy inequality. To obtain such an inequality, the basic

idea is to multiply the equation (2.12) by U'(w-c), where U(.) denotes the absolute
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value function and c denotes an arbitrary real number. Since

U'(w - c) wt = U(w - c)t',

U' (w - c) f(w) = (U' (w - c) (f(w) - f(c)))
-f(w, c).,

and since

U'(w-c)(v(w)wx). = (j U'(p - c) v(p) dp) - U"(w- c) v(w) (w.) 2

- !(w, c)x - v"(W - c)V(w) (W.) 2 ,

we obtain

v(w - c)t + f(w, c). - P(w, c), < 0,

which is nothing but the entropy inequality we wanted.
To obtain the uniform boundedness of 11 w IIL1 (0,1), the idea is to multiply the

equation (2.12) by -(U'(w.))x and integrate on x from 0 to 1. Since

S-(U'(wx))x wt = g () (ILI(0,1),

-(U'(wx))x f() = - U" (wx) wx f' (w) WX = 0,

and since

-(U'(w)). (w(w) wx)x = - U"(W) W (V(w) (W.) 2 + V(w) Wx)

S- U(Wx) v(w) (Wxx) 2

< 0,

we immediately get that

d
TjI tVx w1IL (0,1) < 0,

and so,

wX IIL1(0,1) !5 II (Uo)x IIL'(0,1), Vt E (0,T).

When the function uo has discontinuities, the same result holds with the total vari-
ation of uO ,I uo ITV(O,1), replacing the quantity 11 (uO)x IIL1(0,1); these two quantities

coincide when uo E W"'1(0, 1).
With the two above ingredients, the following error estimate, obtained in 1976

by Kuznetsov, can be proved:

Theorem 4. (Ll-error estimate) We have

n1u(T) - w(T) IIL(O,1) •_ 1 U0 ITV(0,1)V"'T--,

where v = SUPsE[infuo,suPuo] V(S).
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The piecewise-constant case. Let consider the simple case of the DG-method
that uses a piecewise-constant approximate solution:

V j= 1,...,N:

,t uj + {h(uj, uj+l) - h(uj -1, uj )}/Aj = 0,

uj(0) = - ; uo(x) dx,

where we have dropped the superindex '0.' We pick the numerical flux h to be the
Engquist-Osher flux.

According to the model provided by the continuous case, we must obtain (i) an
entropy inequality and (ii) the uniform boundedness of the total variation of Uh.

To obtain the entropy inequality, we multiply our equation by U' (uj - c):

9t U(uj - c) + U'(uj - c){h(uj, uj+l) - h(uj-1, uj)}/Aj = 0.

The second term in the above equation needs to be carefully treated. First, we
rewrite the Engquist-Osher flux in the following form:

hEO (a,b) = f+(a) + f-(b),

and, accordingly, rewrite the second term of the equality above as follows:

STj = UV(Uj - C) {f• (uj) - fw(Uj-l

S- c){f -

Using the simple identity

U'(a - c)(g(a) - g(b)) = G(a, c) - G(b, c) + z (g(b) - g(p)) U"(p - c) dp.

where G(a, c) = fa U'(p - c) g'(p) dp, we get

STj =F+(uj, c) - F+(ujl c)
+f - (f + (uj- f f+(p)) U" (p - x) dp

+F-(uj+l,c) - F-(uj,c)
- J (f(uj+,) - f- (p)) U"(p - x) dp

- F(uj,uj+I;c) - F(uj-l,uj;c) + ddissj

where

F(a, b; c) = F+ (a, c) + F- (b, c),

di,,j = + J (f+(uj-1) - f +(p)) U"(p - x) dp

- f (f -(uj+) - f -(p)) U" (p - x) dp.

,j
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We thus get

Ot U(uj - c) + {F(uj, uj+l; c) - F(uj-,, uj; c)}/Aj + e di,,,jlAj = 0.

Since, f+ and -f- are nondecreasing functions, we easily see that

&diss,j Ž 0,

and we obtain our entropy inequality:

0, U(uj - c) + {F(u, u+l;c) - F(uj-i,uj; c)}/Ij < 0.

Next, we obtain the uniform boundedness on the total variation. To do that, we
follow our model and multiply our equation by a discrete version of -(U'(w,)),,
namely,

where Aj+ 1 / 2 = (/At + Aj+i)/2, multiply it by Aj and sum over j from 1 to N.
We easily obtain

do

tI Uh ITV(o,1) + E vj {h(uj,uj+i) - h(u_, uj)} = 0,
I<_j<_N

where

I ?h ITV(O,1)= 1: Z Ij+1 - Uj I
1<j'<N

According to our continuous model, the second term in the above equality
should be positive. This is indeed the case since the expression

V0 {h(uj, uj+l) - h(uj-1, uj)}

is equal to the quantity

vo {if+(u) - f+(•_l)} + vjo {f-(uj+) - f-(U)},

which is nonnegative by the definition of v°, f+, and f-. This implies that

I Uh(t) ITv(o,1) < I uh(0)ITv(o,1) < IU0 ITv(o,1). (2.14)

With the two above ingredients, the following error estimate, obtained in 1976
by Kuznetsov, can be proved:

Theorem 5. (Ll-error estimate) We have

I u(T) - Uh(T) IL1 (0,1) •- II uo - Uh(0) IIL1(0,1) + CI UO ITV(0,1)T Vf x.



Discontinuous Galerkin Methods 85

The general case. Error estimates for the case of arbitrary k have not been
obtained, yet. However, Jiang and Shu [51] found a very interesting result in the
case in which the nonlinear flux f is strictly convex or concave. In such a situation,
the existence of a discrete, local entropy inequality for the scheme for only a single
entropy is enough to guarantee that the limit of the scheme, if it exists, is the
entropy solution. Jiang and Shu [51] found such a discrete, local entropy inequality
for the DG-method.

To describe the main idea of their result, let us first consider the model equation

Ut + f(u) = (vuX)X.

If we multiply the equation by u we obtain, after very simple manipulations,
1 (U2v + e =0(u)t' + (F(u) - 2 (u x) . 9 = 0

where U
F(u) = uf (u) - f(s) ds,

and

e = V (ux) 2
.

Since e > 0, we immediately obtain the following entropy inequality:

(U) 2(U)2)x <0,- t +u• 4 ( F (u ) - '/ u ,) • < O

Now, we only need to mimic the above procedure using the numerical scheme
(2.7) instead of the above parabolic equation and obtain a discrete version of the
above entropy inequality. To do that, we simply take Vh = Uh in (2.7) and rearrange
terms in a suitable way. If we use the following notation:

11j+12 = (u9++ 11 2 + U,+12)/2,

[Uj12= (U++/ -i+/)

the result can be expressed as follows.

Proposition 6. We have, for j = 1,..., N,

1 d • u2h(x, .) dx + -'ýi+1/2 - Fi-1/2 + aj = 0,2 dt Ij

where

S= Uj+1/2 h(-h)j+h/2 -fuj+1/ f(s) ds,

and

= ] (j+fl2() h(Uh)j+1/2) ds + j-2 (f(s) - h(Uh)j1/2) ds.
j+1/2 fu

1 1 / 2
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Since the quantity ej is nonnegative (because the numerical flux in nondecreas-
ing in its first argument and nonincreasing in its second argument), we immediately
obtain the following discrete, local entropy inequality:

2 wt 4~ U -) dx + P +1/2 - P -1/2 !50-

As a consequence, we have the following result.

Theorem 7. Let f be a strictly convex or concave function. Then, for any k > 0,
if the numerical solution given by the DG method converges, it converges to the
entropy solution.

There is no other formally high-order accurate numerical scheme that has the
above property. See Jiang and Shu [51] for further developments of the above result.

2.3 The TVD-Runge-Kutta time discretization

To discretize our ODE system in time, we use the TVD Runge Kutta time dis-
cretization introduced in [83]; see also [80] and [81].

Th dscetztin huif Itn}N tn tn+l

The discretization Thus, n= 0 is a partition of [0, T] and At" = --
tn, n = 0, ... , N - 1, our time-marching algorithm reads as follows:

- Set uoh = uOh;

- For n = 0, ... , N - 1 compute u'+1 from u' as follows:

1. set u(0) = u;

2. for i = 1, ... , k + 1 compute the intermediate functions:

= {Zai-1 ) + pAt"Lh( )}U
1, =0

3. set un+1 = U(hk+l)

Note that this method is very easy to code since only a single subroutine defining
Lh(Uh) is needed. Some Runge-Kutta time discretization parameters are displayed
on the table below.
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Table 1

Runge-Kutta discretization parameters

order cail O3il max{f8il/ail}

2 1 1 1
11 01
2 2 2

1 1
3 i1 01

4 4 4
1 2 00 23 i 1

The stability property Note that all the values of the parameters ail displayed
in the table below are nonnegative; this is not an accident. Indeed, this is a condition
on the parameters ail that ensures the stability property

Un[+11 < Un

provided that the 'local' stability property

WI < IvI, (2.15)

where w is obtained from v by the following 'Euler forward' step,

w = v + J Lh(V), (2.16)

holds for values of 161 smaller than a given number 6o.
For example, the second-order Runke-Kutta method displayed in the table

above can be rewritten as follows:

Uh = ui + AtLh()=n (U),
Wh "(h1) ÷A h(1•h)),

1un+ 1 =(Un + Wh)
2

Now, assuming that the stability property (2.15), (2.16) is satisfied for

6o = I At maxf{Zi/a•} I = At,

we have
S',hl)I< £ h I Wh]I< I Uh(hl),

and so,

Note that we can obtain this result because the coefficients ail are positive! Runge-
Kutta methods of this type of order up to order 5 can be found in [81].

The above example shows how to prove the following more general result.
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Theorem 8. (Stability of the Runge-Kutta discretization) Assume that the stabil-
ity property for the single 'Euler forward' step (2.15), (2.16) is satisfied for

60 = max I At' max{I3il/ail} I.
O<n<N

Assume also that all the coefficients ail are nonnegative and satisfy the following
condition: i--1

ai=l, i= ,..., k + 1.
1=0

Then Iun Ohl Vn >0.

This stability property of the TVD-Runge-Kutta methods is crucial since it
allows us to obtain the stability of the method from the stability of a single 'Euler
forward' step.

Proof of Theorem 8. We start by rewriting our time discretization as follows:

Set u° = uoh;

- For n = 0, ... , N - 1 compute u'+ 1 from un as follows:
1. set u (0 ) = u;

2. for i = 1, ..., k + 1 compute the intermediate functions:

i-1

) ail Wh )

1=0

where
(dl) =u(1) OlAnL U')

Wh h Oil

3. set u'+1 -- (k+l)

We then have
i--1UM) _ Zail i wh , since ail > 0,

l=0

i-1

1=0

by the stability property (2.15), (2.16), and finally,

lu(') I< max I u(h')I,
h 0<1<i-1

since

i-l
= ~l• 1.

1=0

It is clear now that that Theorem 8 follows from the above inequality by a simple
induction argument. This concludes the proof.
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Remarks about the stability in the linear case For the linear case
f(u) = cu, Chavent and Cockburn [12] proved that for the case k = 1, i.e., for
piecewise-linear approximate solutions, the single 'Euler forward' step is uncondi-
tionally L' (O, T; L 2(O, 1))-unstable for any fixed ratio At/Ax. On the other hand,
in [26] it was shown that if a Runge-Kutta method of second order is used, the
scheme is L'(0, T; L2 (0, 1))-stable provided that

At 1
Ax- - 3

This means that we cannot deduce the stability of the complete Runge-Kutta
method from the stability of the single 'Euler forward' step. As a consequence,
we cannot apply Theorem 8 and we must consider the complete method at once.

When polynomial of degree k are used, a Runge-Kutta of order (k + 1) must be
used. If this is the case, for k = 2, the L' (0, T; L2(0, 1))-stability condition can be
proven to be the following:

At 1
Ax - "

The stability condition for a general value of k is still not known.
At a first glance, this stability condition, also called the Courant-Friedrichs-

Levy (CFL) condition, seems to compare unfavorably with that of the well-known
finite difference schemes. However, we must remember that in the DG-methods
there are (k + 1) degrees of freedom in each element of size Ax whereas for finite
difference schemes there is a single degree of freedom of each cell of size Ax. Also,
if a finite difference scheme is of order (k + 1) its so-called stencil must be of at
least (2k + 1) points, whereas the DG-scheme has a stencil of (k + 1) elements only.

Convergence analysis in the nonlinear case Now, we explore what is the
impact of the explicit Runge-Kutta time-discretization on the convergence prop-
erties of the methods under consideration. We start by considering the piecewise-
constant case.

The piecewise-constant case. Let us begin by considering the simplest case,
namely,

V j=I1,...,N:

(uj+' -n•j )/At + {h(ujn, uj.+I) - h('tu' l,, n')}/Aj = 0,

uj(O)=-•. j uo(x) dx,

where we pick the numerical flux h to be the Engquist-Osher flux.
According to the model provided by the continuous case, we must obtain (i) an

entropy inequality and (ii) the uniform boundedness of the total variation of Uh.
To obtain the entropy inequality, we proceed as in the semidiscrete case and

obtain the following result; see [18] for details.
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Theorem 9. (Discrete entropy inequality) We have

{U(u7+1 - c) - U(u7 - c) }/At + {F(un, uj1; c) - F(ut- 1, u'; c) }/iAj
+ &,•s3 ,jlAt = 0,

where

d f (pj(uj) - pj(p)) U"(p - x) dp

+At fU'(

-At [3+ (f (uY+i) - f- (p)) U"(p - x) dp,

and

PAW) =W - 'At (f +(w) - f -(w)).

Moreover, if the following CFL condition is satisfied
At f

max -f < 11
1•j•N a-•

then Od ,j > 0, and the following entropy inequality holds:

{U(u7+1 - c) -U(u7 - c)}/At + {F(uj, uj+j; c) - F(uj-l, uj; c)}/Aj <_ 0.

Note that e' ,,j 0 because f+, -f-, are nondecreasing and because pj is also
nondecreasing under the above CFL condition.

Next, we obtain the uniform boundedness on the total variation. Proceeding as
before, we easily obtain the following result.

Theorem 10. (TVD property) We have

IU" ITV(0,1) - I UR I TV(0,1) + 19TV -= 0,

where

--= jN -- 1 j+1/2 (Pj+I/ 2(Uj+ 1 ) - Pj+1 / 2 (Ujn)

1<j<NA3 3-U 
j

SA, ul 1-/2--- j-1/2)(+u)-+ -)
1<jN-- < y •-t (Uf+('r) -

- , (u'+ 1 /2 ~ut ) (f-(u•i,•) - f-(u))

where

Uim+1/2 = lU'+ •
\ Ai+1/2
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and

,At + At
Pj+I/2(W) - S -- 7A 1 f+(w) + a f_ .

Moreover, if the following CFL condition is satisfied

At fmax --111<1,
1<j<N Aj

then (9'v > 0, and we have

U,, ITV(0,1) < I0o ITV(o,1).

With the two above ingredients, the following error estimate, obtained in 1976
by Kuznetsov, can be proved:

Theorem 11. (Ll-error estimate for monotone schemes) We have

u u(T) - uh (T) IL1(0,1) _< 11 Uo - Uh(O) IIL(0, 1) + CI UO ITV(O,1)VTAX.

The general case. The study of the general case is much more difficult than
the study of the monotone schemes. In these notes, we restrict ourselves to the
study of the stability of the RKDG schemes. Hence, we restrict ourselves to the
task of studying under what conditions the total variation of the local means is
uniformly bounded.

If we denote by iIj the mean of Uh on the interval I-, by setting Vh = 1 in the
equation (2.7), we obtain,

V j=I..N

(Uj)t + {h(+1 +/ 2,1 U+1/ 2 ) - h(u--1 / • U- 1 / 2 )}/A 3 = 0,

where uJ+1/2 denotes the limit from the left and u,++/2 the limit from the right.
We pick the numerical flux h to be the Engquist-Osher flux.

This shows that if we set Wh equal to the Euler forward step Uh + J Lh (Uh), we
obtain

V j 1,...,N:
(i• -U )/6 + {h(u+ 1 / 2 , uj++,/ 2 ) - h(u7 _ 12,u+_112 )}/A 3 = +.

Proceeding exactly as in the piecewise-constant case, we obtain the following result
for the total variation of the averages,

IUh ITV(O,1) =-- 1 IUJ+' -UJ I.

Theorem 12. (The TVDM property) We have

I Wh ITV(0,1) - I -h ITV(0,1) + -9TVM = 0,
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where

&TVM = •_ (U'(u)j+1/ 2 - U'(w)j+1 1/) (Pj+1/2(UhlI+±) -- Pj+1/2(UhlIj)
I<_j<N

+ENI<j<_N U'(U)1/2 - U'(W). 1 (f+(U,+1/2) -

1•jN
7 (U'(U)3'+i, 2 - U'(W)- 1 / 2 ) (f - uj+ 1 /2) -f t12)

where

, _U,(Ai+i-/2

and

pj+1/2 (Uh JI-) = - f+ (UM+1/2) + y f (u+_1 /2 ).

From the above result, we see that the total variation of the means of the Euler
forward step is nonincreasing if the following sign conditions axe satisfied:

sgn(UIj+l - Wj ) = sgn(pj+1/2(UhjIj+I ) Pj+1/2(UhlIj)), (2.17)

sgn(iuj - uj-1 ) = sgn(u<,-/ 2 - u- 1 /2), (2.18)
sgn(Uj+l - lj ) = sgn(uj 1/ 2 - ujl/2). (2.19)

Note that if the sign conditions (2.17) and (2.18) are satisfied, then the sign condi-
tion (2.19) can always be satisfied for a small enough values of I 61

Of course, the numerical method under consideration does not provide an ap-
proximate solution automatically satisfying the above conditions. It is thus nec-
essaxy to enforce them by means of a suitably defined generalized slope limiter,
ArIh.

2.4 The generalized slope limiter

High-order accuracy versus the TVDM property: Heuristics The
ideal generalized slope limiter A-Ih

- Maintains the conservation of mass element by element,
- Satisfies the sign properties (2.17), (2.18), and (2.19),
- Does not degrade the accuracy of the method.

The first requirement simply states that the slope limiting must not change the
total mass contained in each interval, that is, if Uh = Alfh(Vh),

Ui =;j, j =I,..N.

This is, of course a very sensible requirement because after all we are dealing with
conservation laws. It is also a requirement very easy to satisfy.
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The second requirement, states that if uh = AIhh(Vh) and Wh = Uh + "-Lh(Uh)

then

Iwh ITV (0,1) •5 1I-h I TV (0,1))

for small enough values of 16 1.
The third requirement deserves a more delicate discussion. Note that if Uh is a

very good approximation of a smooth solution u in a neighborhood of the point xo,
it behaves (asymptotically as Ax goes to zero) as a straight line if ux (xo) 0 0. If xo is
an isolated extrema of u, then it behaves like a parabola provided uxx (xo) 54 0. Now,
if Uh is a straight line, it trivially satisfies conditions (2.17) and (2.18). However, if
Uh is a parabola, conditions (2.17) and (2.18) are not always satisfied. This shows
that it is impossible to construct the above ideal generalized 'slope limiter,' or, in
other words, that in order to enforce the TVDM property, we must loose high-
order accuracy at the local extrema. This is a very well-known phenomenon for
TVD finite difference schemes!

Fortunately, it is still possible to construct generalized slope limiters that do
preserve high-order accuracy even at local extrema. The resulting scheme will then
not be TVDM but total variation bounded in the means (TVBM) as we will show.

In what follows we first consider generalized slope limiters that render the
RKDG schemes TVDM. Then we suitably modify them in order to obtain TVBM
schemes.

Constructing TVDM generalized slope limiters Next, we look for simple,
sufficient conditions on the function Uh that imply the sign properties (2.17), (2.18),
and (2.19). These conditions will be stated in terms of the minmod function m
defined as follows:

a s min<,<, I a. I if s = sign(al) ..... sign(a,),m (al, .. ., a~ m0 aotherwise.

Proposition 13. Sufficient conditions for the sign properties Suppose the the fol-
lowing CFL condition is satisfied:

For all j =1,...,N:

AI If Lip + ) -< 1/2. (2.20)

Then, conditions (2.17), (2.18), and (2.19) are satisfied if, for all j =14,... ,N, we
have that

U3+1/2 = Uj + M ( U,+1/2 - uj, uj - uj-1, ýUj+l - Wj) (2.21)

j/2=U - M(U uj_1/2, Uj - Uj-1, ýUj+l - -j).

Proof. Let us start by showing that the property (2.18) is satisfied. We have:

l,+1/2 - U,-1/2 = (Uj+// 2 - I) + (Ui - ;j-l) + (i-1 - Uj_•/2)

=e19 M -9lj - ),
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where

e =1+ uJ+1/2 - Uj uj-_/2 - uj-1 G [0, 2],
_9j -- •Uj--1 i j -- 9j -- 1

by conditions (2.21) and (2.22). This implies that the property (2.18) is satisfied.
Properties (2.19) and (2.17) are proven in a similar way. This completes the proof.

Examples of TVDM generalized slope limiters
a. The MUSCL limiter. In the case of piecewise linear approximate solutions,

that is,
VhIIj = +j + (X- Xj)Vx,j, j =1,...,N,

the following generalized slope limiter does satisfy the conditions (2.21) and (2.22):

UhIIj = vj + (x - xj) m (vX,j, A -Vj-1

This is the well-known slope limiter of the MUSCL schemes of van Leer [88,89].
b. The less restrictive limiter Al~h. The following less restrictive slope

limiter also satisfies the conditions (2.21) and (2.22):

S• j " j -=-ix + -- Xj)m (v.,j, Vj+1 _j/2 Vj A/- vj-1 ).

Moreover, it can be rewritten as follows:

"j-1/2 =VJ+ - m (vUj• V-v1/2, V j-1', 1j+1 - 2.

We denote this limiter by AIIh.
Note that we have that

IIUh - Afl~h(Vh) IL1 (o,1) !5 -AX Ih ITV(Q,1).

See Theorem 16 below.
c. The limiter AHhk. In the case in which the approximate solution is piecewise

a polynomial of degree k, that is, when

k

Vh(X,t) = f W W,
1=0

where

W1 (x) = Pj (2 (x - xj) 1Aj),

and Pj are the Legendre polynomials, we can define a generalized slope limiter in a
very simple way. To do that, we need the define what could be called the Pl-part
of Vh:

1

vh(Xt) = WI(X),
W=0

We define Uh = AIfh (Vh ) as follows:
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- For j = 1, ... ,N compute Uh11J as follows:
1. Compute U7+1/ 2 and u_ by using (2.22) and (2.23),

2. If u;+1 / 2 = V.-112 and u+12 = V+ 1/2 set Uh[IJ = VhlIj,

3. If not, take Uhlj equal to AHh(v,).

d. The limiter ArII,,.. When instead of (2.22) and (2.23), we use

U3 +1/2 -- Tj + M ( V3 +1/2 -:3 Uj, vTj -vj1, Tj+l - Tj, C (AX)') (.3

Uj-1/2 = VJ - m(I 5 - V_1/2, Vi - Vj-1, Vj+1 - lj, C (Ax)'),

for some fixed constant C and a E (0, 1), we obtain a generalized slope limiter we
denote by AI,,

This generalized slope limiter is never used in practice, but we consider it here
because it is used for theoretical purposes; see Theorem 16 below.

The complete RKDG method Now that we have our generalized slope lim-
iters, we can display the complete RKDG method. It is contained in the following
algorithm:

- Set u° = AIfh Pvh (uo);
- For n = 0, ..., N - 1 compute u+ 1 as follows:

1. set u(0) = uh;

2. for i = 1, ... , k + 1 compute the intermediate functions:

h EAlh ail uh+ail AtfLh(U(h ;

3. set u'+1 - U(hk+i)

This algorithm describes the complete RKDG method. Note how the generalized
slope limiter has to be applied at each intermediate computation of the Runge-
Kutta method. This way of applying the generalized slope limiter in the time-
marching algorithm ensures that the scheme is TVDM, as we next show.

The TVDM property of the RKDG method To do that, we start by
noting that if we set

uh = AIfh(vh), Wh = Uh + 6 Lh(Uh),

then we have that

I Uh ITV(o,) < I h ITV(O,1), (2.24)

IWh ITV(O,1) < I Uh ITV(O,1), V 16 JO, (2.25)

where

60 1 =max (2 I f+ ILip +I f- lLip) j N,j A j+1 A~j

by Proposition 13. By using the above two properties of the generalized slope lim-
iter,' it is possible to show that the RKDG method is TVDM.
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Fig. 2.1. Example of slope limiters: The MUSCL limiter (top) and the less restric-
tive Afh,' limiter (bottom). Displayed are the local means Of 2Lh (thick line), the
linear function Uh in the element of the middle before limiting (dotted line) and
the resulting function after limiting (solid line).
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Theorem 14. (Stability induced by the generalized slope limiter) Assume that
the generalized slope limiter AI.h satisfies the properties (2.24) and (2.25). Assume
also that all the coefficients ail are nonnegative and satisfy the following condition:

i--1

Z ail=l, i=1,...,k+1.
1=0

Then Ileh ITV(O,1) 1- IUO ITV(O,1), Vn >0.

Proof. The proof of this result is very similar to that of Theorem 8. Thus, we
start by rewriting our time discretization as follows:

- Set u°h = uoh;

- For n = 0,..., N - 1 compute un+1 from un as follows:
1. set u h°) = uh;

2. for i = 1, ... , k + 1 compute the intermediate functions:
i--1

U(')= ATIh aZil W(ih },
ý 1=0

where ("> (= + i 'Atn Lh(U('));
h ail

3. set un+1 = (k+l)
3.sth Uh

Then have,
i--1

i) ITV(0,1) 5 1 Zail -wh ITV(0,1), by (2.24),
1=0

1=0

i-1

Wailh ITV(0,1), by (2.25),
1=0

< max IU(h) ITV(0,1),
- 0<I<i-1

since
i-1

E i 1.
1=0

It is clear now that that the inequality

u-h ITV(0,1) _< I ITV (0,1), Vn > 0.

follows from the above inequality by a simple induction argument. To obtain the
result of the theorem, it is enough to note that we have

I Uoh ITV(0,1) !5 1 uo ITV(0,1),

by the definition of the initial condition u°. This completes the proof.
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TVBM generalized slope limiters As was pointed out before, it is possible
to modify the generalized slope limiters displayed in the examples above in such a
way that the degradation of the accuracy at local extrema is avoided. To achieve
this, we follow Shu [82] and modify the definition of the generalized slope limiters by
simply replacing the minmod function m by the TVB corrected minmod function
mh defined as follows:

fn( am) = Jal if Jail < M(Ax) 2 , (2.26)
m (ai, ..., am) otherwise,

where M is a given constant. We call the generalized slope limiters thus constructed,
TVBM slope limiters.

The constant M is, of course, an upper bound of the absolute value of the
second-order derivative of the solution at local extrema. In the case of the nonlinear
conservation laws under consideration, it is easy to see that, if the initial data is
piecewise C 2, we can take

M = sup{ (uO)xx(y) ,y: (uo)X(y) = 0}.

See [24] for other choices of M.
Thus, if the constant M is is taken as above, there is no degeneracy of accu-

racy at the extrema and the resulting RKDG scheme retains its optimal accuracy.
Moreover, we have the following stability result.

Theorem 15. (The TVBM property) Assume that the generalized slope limiter
Allh is a TVBM slope limiter. Assume also that all the coefficients ail are nonneg-
ative and satisfy the following condition:

i-I

Eail , i=1,...,k+1.

Then

Ih ITV(0,1) -: iO ITV(o,1)) + CM, Vn >0,
where C depends on k only.

Convergence in the nonlinear case By using the stability above stability
results, we can use the Ascoli-Arzeld theorem to prove the following convergence
result.

Theorem 16. (Convergence to the entropy solution) Assume that the generalized
slope limiter Allh is a TVDM or a TVBM slope limiter. Assume also that all the
coefficients ai are nonnegative and satisfy the following condition:

i-i
E ail =l i=l,...,k + 1.

1=0

Then there is a subsequence {uh'}hw>O of the sequence {Uh}h>O generate by the
RKDG scheme that converges in L' (0, T; L 1 (0, 1)) to a weak solution of the problem
(2.1), (2.2).
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Moreover, if the TVBM version of the slope limiter Alfhh,. is used, the weak
solution is the entropy solution and the whole sequence converges.

Finally, if the generalized slope limiter ATIh is such that

1i1h - ATIh(vh) IIL1(O,1) _5 CAx I h ITV(0,1),

then the above results hold not only to the sequence of the means {Uh}h>o but to
the sequence of the functions { Uh}h>O.

Error estimates for an implicit version of the discontinuous Galerkin method
(with the so-called shock-capturing terms) have been obtained by Cockburn and
Gremaud [19].

2.5 Computational results

In this section, we display the performance of the RKDG schemes in two simple
but typical test problems. We use piecewise linear (k = 1) and piecewise quadratic
(k = 2) elements; the AIhI generalized slope limiter is used.

The first test problem. We consider the simple transport equation with
periodic boundary conditions:

Ut + Ux = 0,
u(x,0)={ 10 .4 <x < .6,

ýO otherwise.

We use this test problem to show that the use of high-order polynomial ap-
proximation does improve the approximation of the discontinuities (or, in this case,
'contacts'). To amplify the effect of the dissipation of the method, we take T = 100,
that is, we let the solution travel 100 times across the domain. We run the scheme
with CFL = 0.9 * 1 = 0.9 for k = 0, CFL = 0.9 * 1/3 = 0.3 for k = 1, and
CFL = 0.9 * 1/5 = 0.18 for k = 2. In Figure 2.2, we can see that the dissipation
effect decreases as the degree of the polynomial k increases; we also see that the
dissipation effect for a given k decreases as the Ax decreases, as expected. Other
experiments in this direction have been performed by Atkins and Shu [1]. For ex-
ample, they show that when polynomials of degree k = 11 are used, there is no
detectable decay of the approximate solution.

To assess if the use of high degree polynomials is advantageous, we must compare
the efficiencies of the schemes; we only compare the efficiencies of the method for
k = 1 and k = 2. We define the inverse of the efficiency of the method as the
product of the error times the number of operations. Since the RKDG method that
uses quadratic elements has 0.3/0.2 times more time steps, 3/2 times more inner
iterations per time step, and 3 x 3/2 x 2 times more operations per element, its
number of operations is 81/16 times bigger than the one of the RKDG method
using linear elements. Hence, the ratio of the efficiency of the RKDG method with
quadratic elements to that of the RKDG method with linear elements is

eff.ratio 16 error(RKDG(k = 1)
81 error(RKDG(k = 2)'
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In Table 2, we see that the use of a higher degree does result in a more efficient
resolution of the contact discontinuities. This fact remains true for systems as we
can see from the numerical experiments for the double Mach reflection problem in
the next chapter.

The second test problem. We consider the standard Burgers equation with
periodic boundary conditions:

U 2Ut + (i- )ý = 0,

U(X0)= U(X =1 +1 sin (7 (2 x- 1)).

Our purpose is to show that (i) when the constant M is properly chosen, the
RKDG method using polynomials of degree k is is order k + 1 in the uniform norm
away from the discontinuities, that (ii) it is computationally more efficient to use
high-degree polynomial approximations, and that (iii) shocks are captured in a few
elements without production of spurious oscillations

The exact solution is smooth at T = .05 and has a well developed shock at
T = 0.4; notice that there is a sonic point. In Tables 3,4, and 5, the history of
convergence of the RKDG method using piecewise linear elements is displayed and
in Tables 6,7, and 8, the history of convergence of the RKDG method using piecewise
quadratic elements. It can be seen that when the TVDM generalized slope limiter
is used, i.e., when we take M = 0, there is degradation of the accuracy of the
scheme, whereas when the TVBM generalized slope limiter is used with a properly
chosen constant M, i.e., when M = 20 > 2 7r, the scheme is uniformly high order
in regions of smoothness that include critical and sonic points.

Next, we compare the efficiency of the RKDG schemes for k = 1 and k = 2
for the case M = 20 and T = 0.05. The results are displayed in Table 9. We can
see that the efficiency of the RKDG scheme with quadratic polynomials is several
times that of the RKDG scheme with linear polynomials even for very small values
of Ax. We can also see that the efficiency ratio is proportional to (Ax)-', which
is expected for smooth solutions. This indicates that it is indeed more efficient to
work with RKDG methods using polynomials of higher degree.

That this is also true when the solution displays shocks can be seen in Figures
2.3, 2.4, and 2.5. In the Figure 2.3, it can be seen that the shock is captured in
essentially two elements. Details of these figures are shown in Figures 2.4 and 2.5,
where the approximations right in front of the shock are shown. It is clear that
the approximation using quadratic elements is superior to the approximation using
linear elements. Finally, we illustrate in Figure 2.6 how the schemes follow a shock
when it goes through a single element.

2.6 Concluding remarks

In this section, which is the core of these notes, we have devised the general RKDG
method for nonlinear scalar conservation laws with periodic boundary conditions.

We have seen that the RKDG are constructed in three steps. First, the Discon-
tinuous Galerkin method is used to discretize in space the conservation law. Then,
an explicit TVB-Runge-Kutta time discretization is used to discretize the result-
ing ODE system. Finally, a generalized slope limiter is introduced that enforces
nonlinear stability without degrading the accuracy of the scheme.
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We have seen that the numerical results show that the RKDG methods using
polynomials of degree k, k = 1, 2 are uniformly (k + 1)-th order accurate away
from discontinuities and that the use of high degree polynomials render the RKDG
method more efficient, even close to discontinuities.

All these results can be extended to the initial boundary value problem in
a very simple way, see [241. In what follows, we extend the RKDG methods to
multidimensional systems.

Table 2
Comparison of the efficiencies of RKDG schemes for k = 1 and k = 2

Transport equation with M = 0, and T = 100.

Ll-norm

Ax eff.ratio order

1/10 0.88 -

1/20 0.93 -0.08
1/40 1.81 -0.96
1/80 2.57 -0.50
1/160 3.24 -0.33
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Table 3
P1 , M=0, CFL=-0.3, T-=0.05.

L'(0, 1) - error L'(0, 1) - error

/6x 105 • error order 105 • error order

1/10 1286.23 - 3491.79 -
1/20 334.93 1.85 1129.21 1.63
1/40 85.32 1.97 449.29 1.33
1/80 21.64 1.98 137.30 1.71
1/160 5.49 1.98 45.10 1.61
1/320 1.37 2.00 14.79 1.61
1/640 0.34 2.01 4.85 1.60

1/1280 0.08 2.02 1.60 1.61

Table 4
P', M -20, CFL= 0.3, T = 0.05.

L'(0, 1) - error L'(0, 1) - error

Ax 10 5 • error order 10 5 -error order

1/10 1073.58 - 2406.38 -

1/20 277.38 1.95 628.12 1.94
1/40 71.92 1.95 161.65 1.96
1/80 18.77 1.94 42.30 1.93

1/160 4.79 1.97 10.71 1.98
1/320 1.21 1.99 2.82 1.93
1/640 0.30 2.00 0.78 1.86
1/1280 0.08 2.00 0.21 1.90
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Fig. 2.2. Comparison of the exact and the approximate solutions for the linear case
f (u) = u. Top: Ax = 1/40, middle: Ax = 1/80, bottom: Ax = 1/160. Exact so-
lution (solid line), piecewise-constant elements (dash/dotted line), piecewise-linear
elements (dotted line) and piecewise-quadratic elements (dashed line).
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Table 5
Errors in smooth region 2 = {x : Ix - shocki > 0.1}.

P', M=20, CFL=0.3, T=0.4.

L'(f2) - error n'(f2) - error

Ax 105 • error order 105 • error order

1/10 1477.16 - 17027.32 -
1/20 155.67 3.25 1088.55 3.97
1/40 38.35 2.02 247.35 2.14
1/80 9.70 1.98 65.30 1.92

1/160 2.44 1.99 17.35 1.91
1/320 0.61 1.99 4.48 1.95
1/640 0.15 2.00 1.14 1.98

1/1280 0.04 2.00 0.29 1.99

Table 6
p 2, M =0, CFL= 0.2, T =0.05.

L'(0, 1) - error L' (0, 1) - error

Ax 105 • error order 10 5 • error order

1/10 2066.13 - 16910.05 -

1/20 251.79 3.03 3014.64 2.49
1/40 42.52 '2.57 1032.53 1.55
1/80 7.56 2.49 336.62 1.61
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Table 7
p 2, M = 20, CFL= 0.2, T = 0.05.

L'(0, 1) - error L'0(0, 1) - error

Ax 105 • error order 105 -error order

1/10 37.31 - 101.44 -

1/20 4.58 3.02 13.50 2.91
1/40 0.55 3.05 1.52 3.15
1/80 0.07 3.08 0.19 3.01

Table 8
Errors in smooth region S? = {x : Ix - shockj > 0.1}.

p 2 , M = 20, CFL= 0.2, T = 0.4.

L'(-2) - error L'(S2) - error

Ax 105 • error order 105 • error order

1/10 786.36 - 16413.79 -

1/20 5.52 7.16 86.01 7.58
1/40 0.36 3.94 15.49 2.47
1/80 0.06 2.48 0.54 4.84
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Table 9
Comparison of the efficiencies of RKDG schemes for k = 1 and k = 2

Burgers equation with M = 20, and T = 0.05.

Ll-norm L'-norm

Ax eff.ratio order eff.ratio order

1/10 5.68 - 4.69 -

1/20 11.96 -1.07 31.02 -2.73
1/40 25.83 -1.11 70.90 -1.19
1/80 52.97 -1.04 148.42 -1.07

2.7 Appendix: Proof of the L 2-error estimates

Proof of the L 2 -stability In this section, we prove the the stability result of
Proposition 1. To do that, we first show how to obtain the corresponding stability
result for the exact solution and then mimic the argument to obtain Proposition 1.

The continuous case as a model. We start by rewriting the equations (2.4)
in compact form. If in the equations (2.4) we replace v(x) by v(x, t), sum on j from
1 to N, and integrate in time from 0 to T, we obtain

V v : v(t) is smooth Vt E (0,T)

B(u,v) = 0, (2.27)

where

B(u,v) = {1 Otu(xt) v(xt) - cu(x,t) a v(x,t) }dxdt.

Taking v = u, we easily see that we see that

S11 11T 2 ýý(, 1) _
B(u, u) = 211 II2(0,1) L0 I2 2(0,1),

and since

B(u,u) = 0,

by (2.27), we immediately obtain the following L2-stability result:

11 u(T) 2 1 2

2 II (oi) L 211 o L2(o,1).

This is the argument we have to mimic in order to prove Proposition 1.
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The discrete case. Thus, we start by finding the discrete version of the form
B(., -). If we replace v(x) by Vh(X,t) in the equation (2.7), sum on j from 1 to N,
and integrate in time from 0 to T, we obtain

V vh : Vh(t) E Vhk VtE(0,T):
Bh(Uh, Vh) = 0, (2.28)

where

Bh (Uh, Vh) = OtUh(X, t) Vh (x, t) dx dt (2.29)

jT<1Nj CUh(X,t) Ox Vh(X,t)dx dt

- j _: h(uh)j+ 1 / 2 (t)[vh(t)]j+1/2dt.

Following the model provided by the continuous case, we next obtain an ex-
pression for Bh (Wh, Wh). It is contained in the following result which will proved
later.

Lemma 17. We have
Bh(Wh, h) (T)121

Bh(Wh, Wh)= Wh(T) IL2(o,) + eT(Wh) - •1J Wh(o) IL(o,1),

where

eT(Wh) 2 foL E1j•N [Wh(t)]+1/2 dt.

Taking wh = Uh in the above result and noting that by (2.28),

Bh (uh, uh) = 0,

we get the equality

'11 Uh(T) 11L2(O1 + eT (Uh) I I Uh (0) 11L2(,)L1 h ( 0,T ) 2 IL2(0,1);

from which Proposition 1 easily follows, since
I I Uh (T) 12 2(0, 1) <- 111 U0 1122(,)

1 2 1 2 (0 ~

by (2.8). It only remains to prove Lemma 17.
Proof of Lemma 17. After setting Uh = Vh = wh in the definition of Bh,

(2.29), we get

Bh(wh,wh) = Wh(T) L (0,,) + eOdi.(t) dt - 2l,,Wh(O) L2(o,1),

where

ediýsýt) -() {h(Wh)j+1/2(t) [Wh(t)]j+1/2 + C Wj h(X,t) OxWh(X,t)dx
I<j•_N j I
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We only have to show that fT edi. (t) dt = 9Tr(wh). To do that, we proceed as
follows. Dropping the dependence on the variable t and setting

W~h(Xj+l/2) = 1 (Wh(X_+1/2) + Wh(X -+I/)
2 h+ j+1/2) +

we have, by the definition of the flux h, (2.11),

h(Wh)j+1, 2 [ Wh]lj+1/2 = Cu~h [Wh] I C [wh]
2 }j±1/2,

I 1j3N 4 I<j<N

and

-C J CWh(X) x Wh(x) dx = 2

1•j•N ¾ l 1j•N

= C E I {h[Whl}j+1/2.

I<_j<_N

Hence

ediSS(t) = L E 2
1<j<N

and the result follows. This completes the proof of Lemma 17.
This completes the proof of Proposition 1.

Proof of Theorem 2 In this section, we prove the error estimate of Theorem 2
which holds for the linear case f(u) = cu. To do that, we first show how to estimate
the error between the solutions w. = (u., q.)t, v = 1, 2, of

Ot u, +,9,f (u,)=O0 in (0, T) x (0, 1),

u,(t = 0) = uo,v, on (0,1).

Then, we mimic the argument in order to prove Theorem 2.
The continuous case as a model. By the definition of the form B(., -), (2.7),

we have, for v = 1, 2,

B(w.,,v) = 0, V v: v(t) is smooth Vt E (0,T).

Since the form B(., -) is bilinear, from the above equation we obtain the so-called
error equation:

V v : v(t) is smooth VtE (0,T):

B(e,v) = 0, (2.30)

where e = w, - W2. Now, since
1 I 112 (O0,) 1 e(O) 2

B(e- e) = 211e(T) L 2 L2(O,1),

and

B(e, e) = 0,
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by the error equation (2.30), we immediately obtain the error estimate we sought:

2I e(T 12(0, 1) ý 2 1 UOJi - UO,2 1L2 (o,J)

To prove Theorem 2, we only need to obtain a discrete version of this argument.
The discrete case. Since,

Bh(Uh,Vh) =0, Vvh : v(t) E Vh Vt E (0,T),
Bh(U, Vh) = 0, V Vh : Vh(t) E Vh Vt E (0,T),

by (2.7) and by equations (2.4), respectively, we easily obtain our error equation:

Vvh: Vh(t)EVh VtE(0, T):

Bh(e, Vh) = 0, (2.31)

where e = w - Wh.
Now, according to the continuous case argument, we should consider next the

quantity Bh(e, e); however, since e(t) is not in the finite element space Vh, it is
more convenient to consider Bh(Ph(e), Ph (e)), where Ph(e(t)) is the L2 -projection
of the error e(t) into the finite element space Vhk.

The L2-projection of the function p E L2(0, 1) into Vh, Ph(p), is defined as the
only element of the finite element space Vh such that

V Vh E Vh :

j (Ph(p)(x) - p(X)) Vh(x) dx =0. (2.32)

Note that in fact Uh(t = 0) = Ph(uo), by (2.8).
Thus, by Lemma 17, we have

Bh(Ph(e), Ph(e)) = Ph(e(T)) 1122(,,l) + eT(Ph(e)) -- I1 Ph(e(O))11220,x),

and since
Ph(e(0)) = Ph(Uo - Uh(0)) = Ph(Uo) -- Uh(0) = 0,

and

Bh(Ph(e), Ph(e)) = Bh(Ph(e) - e, Ph(e)) = Bh(Ph(U) - u, Ph(e)),

by the error equation (2.31), we get

1 11 Ph(e(T)) 122(o,j) + eT(Ph(e)) = Bh(Ph(U) - u, Ph(e)). (2.33)

It only remains to estimate the right-hand side

B(Ph(u) - u, Ph(e)),

which, according to our continuous model, should be small.
Estimating the right-hand side. To show that this is so, we must suitably

treat the term B(Ph(w) - w, Ph(e)). We start with the following remarkable result.
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Lemma 18. We have

Bh(Ph(U) - u, Ph(e)) = - E h(Ph(u) - u)j+x/ 2 (t)[Ph(e)(t)]j+1/2 dt.

Proof Setting p = Ph (u) - u and vh = Ph (e) and recalling the definition of
Bh(., .), (2.29), we have

Bh (p, Vh) = OtP(x, t) Vh (x, t) dx dt

ITE P p(X, t)a.Vh (X, t) dxdt
1_ _N 4

- oTZ h(p)j÷1x 2(t)[Vh(t)]j+1 2dt

= - joTZ< h(p)i+1l 2 (t)[vh(t) ]+1/2 dt,

by the definition of the L2-projection (2.32). This completes the proof.
Now, we can see that a simple application of Young's inequality and a stan-

dard approximation result should give us the estimate we were looking for. The
approximation result we need is the following.

Lemma 19. If w E Hk+l(Ij UIj+I), then

l h(Ph(w) - w)(Xj+1 1 2 ) I < ck ()k+1/ 2 Icwl+1( +)

where the constant ck depends solely on k.

Proof. Dropping the argument XJ+1/•2 we have, by the definition (2.11) of the
flux h,

I h(P(w) - w) I c (Ph(w)+ + Ph(w)-) - Lc(Ph(w)+ - Ph(w)-) - cwl

C1 C IcI(h(W)+ - )+ C + I CI (D, -W
2 2 hw wI

< IcI max{ I Ph(w)+ - w 1, IPh(w)- -wl}

and the result follows from the properties of Ph after a simple application of the
Bramble-Hilbert lemma; see [16]. This completes the proof.

An immediate consequence of this result is the estimate we wanted.

Lemma 20. We have
Bh(Ph(U) - U, Ph(e)) < ck ( 1x) c1 T I o Hk+1(o,1) + cIeT(Ph(e)),

where the constant ck depends solely on k.
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Proof. After using Young's inequality in the right-hand side of Lemma 18, we
get

Bh(Ph(u) - u, Ph(e)) _ jT 1 h(Ph(u) -U)+ 1/ 2(t) 12

+ T iCi-[ph(e)(t) ] +1/ t

By Lemma 19 and the definition of the form eT, we get

2 2k+1 I loT 1
Bh(Ph(U) - U, Ph-(e)) S C (Ax) 4 0 I j< U lý+'(IjujI•+) + 2 eT(Ph(e))

0 1

This completes the proof.
Conclusion. Finally, inserting in the equation (2.33) the estimate of its right

hand side obtained in Lemma 20, we get

I1 Ph(e(T)) 12(0,I) + eT(Ph(e)) -5 C k l cTIuo Hk+1(o 1),

Theorem 2 now follows from the above estimate and from the following inequality:

11 e(T) IILý(o,1) < 11 u(T) - Ph(u(T)) I1L2(o,1) + 11 Ph(e(T)) 11L2(0,l)

S Ck (/x)k+l I UO IHk+I(0,1) + II Ph(e(T)) IIL2(0,1).

Proof of Theorem 3 To prove Theorem 3, we only have to suitably modify the
proof of Theorem 2. The modification consists in replacing the L2-projection of the
error, Ph(e), by another projection that we denote by Rh(e).

Given a function p E L' (0, 1) that is continuous on each element Ij, we define
Rh (p) as the only element of the finite element space Vh such that

Vj= 1,...,N:

Rh(p)(xj,t) -p (Xýj,t) = 0, £ = 0,..., k, (2.34)

where the points xj,t are the Gauss-Radau quadrature points of the interval Ij. We
take

Xj,k = XJ-1/2 if C > 0, (2.35)
I~i-12 i c <0.

The special nature of the Gauss-Radau quadrature points is captured in the fol-
lowing property:

V•pEP'(Ij), f<_k, VpEP~k-V(j):

j (Rh,(p)(x) - p(x)>) (x) dx = 0. (2.36)

Compare this equality with (2.32).



112 Bernardo Cockburn

The quantity Bh(Rh(e),Rh(e)). To prove our error estimate, we start by
considering the quantity Bh (Rh (e), Rh (e)). By Lemma 17, we have

Bh(Rh(e),Rh(e)) = 2 11 Rh(e(T)) 2 + 9T(Rh(e)) - Rh(e(O)) L2(0,1),

and since

Bh(Rh(e), Rh(e)) = Bh(Rh(e) - e, Rh(e)) = Bh(Rh(u) - u, Rh(e)),

by the error equation (2.31), we get

2Rh(e(T)) LI•2(o,1) ± &T(Rh(e)) 2 2-[ Rh(e(O)) [L2(o,1) + Bh(Rh(U) - u, Rh(e)).

Next, we estimate the term B(Rh(u) - u, Rh(e)).
Estimating B(Rh(U) - u, Ra(e)). The following result corresponds to Lemma

18.

Lemma 21. We have ToI
Bh(Rh(U) -u, vh) = (Rh(Otu)(x,t) -Otu(x,t))vh(x,t)dxdt

- fT E<.< -~ e(h ()u(X, t))0.Vh (X, t) dxdt.

Proof Setting p = Rh (u) - u and Vh = Rh (e) and recalling the definition of
Bh(.,.), (2.29), we have

Bh(p, vh) = Otp(x,t) vh(x,t)dxdt

T cp(x, t) 9x vh(x, t) dx dt

1<jN fI

- T E h(p)j+1/2(t) [Vh(t)1j+1/2 dt.

But, from the definition (2.11) of the flux h, we have

h(R(u) - u) = c +(Rh(U) +Rh (U) -Rh(U) -CU
22

-CICI ( Rh()-+ ) + ( )+ 1 (Rh(U)- - U)
2 2

=0,

by (2.35) and the result follows.
Next, we need some approximation results.
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Lemma 22. If w E Hk+ 2 (Ij), and Vh E pk(Ij), then

j (Rh (w) - w)(x) Vh(x) dx < cA (Ax)k+l Iw IHI+1(Ij) V vh IIL2(Ij),

and

I fj (Rh(W) - w)(x) 9Vh(x) dx :- Ck (Ax)k+lI w IHk+2(Ij) 11 Vh IIL2(Ij))

where the constant ck depends solely on k.

Proof. The first inequality follows from the property (2.36) with f = k and
from standard approximation results. The second follows in a similar way from the
property (2.36) with t = k - 1 and a standard scaling argument. This completes
the proof.

An immediate consequence of this result is the estimate we wanted.

Lemma 23. We have

Bh(Rh(U) - u, Rh(e)) •_ ck (Ax)k+l I uo IHk+2(0,1) II Rh(e(t)) IIL2(O,1) dt,

where the constant cl, depends solely on k and I c 1.

Conclusion. Finally, inserting in the equation (2.33) the estimate of its right

hand side obtained in Lemma 23, we get

1 Rh(e(T)) 2IIL2(0,1)+ e9T(Rh(e)) < II Rh(e(O)) I•2(0,1)

+Ck (Ax)k+l I Uo IHk+2(o,1) I II Rh(e(t)) I•IL2(o,1) dt.

After applying a simple variation of the Gronwall lemma, we obtain

II Rh(e(T)) 1IL2(0,1) • II Rh(e(O))(x) IIL2(O,l) + ck (Ax)k+l TI Uo IHk++(O,1)

_<C •k + I Uo IHI+2(o,l).

Theorem 3 now follows from the above estimate and from the following inequality:

II e(T) IIL2(o,1) < II u(T) - Rh(u(T)) I1L2(O,1) + II Rh(e(T)) IIL2(O,1)

< Ck (Ax)k+" no IH +1(o,1) + II Rh(e(T)) IIL2(o,l).
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Fig. 2.3. Comparison of the exact and the approximate solutions obtained with
M = 20, Ax = 1/40 at T = 1/1r (top) and at T = 0.40 (bottom): Exact solution
(solid line), piecewise linear solution (dotted line), and piecewise quadratic solution
(dashed line).



Discontinuous Galerkin Methods 115

0.75-

0.5-

I

0.25--

0.5

-0.251

Fig. 2.4. Detail of previous figures. Behavior of the approximate solutions four
elements around the shock at T = 1/7r (top) and at T = 0.40 (bottom): Exact
solution (solid line), piecewise linear solution (dotted line), and piecewise quadratic
solution (dashed line).
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Fig. 2.5. Detail of previous figures. Behavior of the approximate solutions two
elements in front of the shock at T = 1/ir (top) and at T = 0.40 (bottom): Exact
solution (solid line), piecewise linear solution (dotted line), and piecewise quadratic
solution (dashed line).
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Fig. 2.6. Comparison of the exact and the approximate solutions obtained with
M = 20, Ax = 1/40 as the shock passes through one element. Exact solution
(solid line), piecewise linear elements (dotted line) and piecewise quadratic elements
(dashed line). Top: T = 0.40, middle: T = 0.45, and bottom: T = 0.50.
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3 The Hamilton-Jacobi equations in one space
dimension

3.1 Introduction

In this chapter, we extend the RKDG method to the following simple problem for
the Hamilton-Jacobi equation

t + H(V) = 0, in (0, 1) x (0, T), (3.1)

W(x, 0) = T0(x), V x E (0, 1), (3.2)

where we take periodic boundary conditions. The material in this section is based
in the work of Hu and Shu [43].

3.2 The RKDG method

The main idea to extend the RKDG method to this case, is to realize that u = Vx
satisfies the following problem:

ut + H(u)X = 0, in (0, 1) x (0, T), (3.3)

u(x,0) = (W0o)x(x), V x E (0, 1), (3.4)

and that p can be computed from u by solving the following problem:

W = -H(u), in (0, 1) x (0, T), (3.5)

V(x,0) = Wo(x), V x E (0,1). (3.6)

A straightforward application of the RKDG method to the equations (3.3), (3.4)
produces a piecewise polynomial approximation Uh to u = Wx. If the approximating
polynomials are taken to be of degree (k - 1), it is reasonable to seek an approx-
imation Vh to W that is piecewise a polynomial of degree k. To obtain it, we can
discretize (3.5), (3.6) in one of the following ways:

(i) Take V h(', t) in Vhk such that

Vj=I,...,N, VhEP"(Ij):

fi Ot Ph (X, t) Vh(x) dx = - fj H(Uh (X,t)) Vh (x) dx,

fj ýp(X, 0) Vh (x) dx 4 O 'p(X) Vh (x) dx.

(ii) Take Qh (', t) in Vh such that
Vj = ,...,N: O9x~h(x,t)= u(x,t) Vx E Ij.

This determines Vh up to a constant. To find this constant, we impose the following
condition:

Vj=1,...,N:

d Vh (X,t)dx =•j h o (x ,t))ddx

fj V(x, 0) dx = fj o (x) dx.
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(iii) Pick one element, say Iz, and determine the values of ^h on it by requiring
the following conditions:

8~mh(x,t) = u(x,t) Vx E Ii,

-•p•i h(x,t)dx = -fj H(uh(xt))dx,

fj W(x,O)dx = j Woo(x)dx.

Then, compute Wh as follows:

yhh(x,t) = soh(XJ,t) + u(s,t)ds.

Note that, unlike the previous approaches, the approximate solution Wh is now
continuous.

The advantage of the first two approaches is that they can be carried out in
parallel. On the other hand, in the third approach, only a single ODE has to be
solved; moreover, the integration in space takes place just at the very end of the
whole computation. This approach is much more efficient.

It could be argued that in the third approach, the recovered values of W depend
upon the choice of the starting point xl. However, this difference is on the level of
truncation errors and does not affect the order of accuracy. Hu and Shu [43] used
both the second and third approaches; they report that their numerical experience
is that, when there are singularities in the derivatives, the second approach will
often produce dents and bumps when the integral path in time passes through
the singularities. This can be avoided in the third approach. Indeed, the main
idea of using the third approach is to choose the element Ig so that the time
integral paths do not cross derivative singularities. This cannot be always be done
with a single element li, but it is always possible to switch to another element
before the singularity in the derivative hits the current element Ig. If the number of
discontinuities in the derivative is finite, this needs to be done only a finite number
of times. This maintains the efficiency of the method.

Note that all the properties fo the RKDG method obtained in the previous
section apply to the approximate solution Uh. In particular, a consequence of the
work of Jiang and Shu [51], is the following result for the approximation to the
derivative px, uh; see also Proposition 6 and Theorem 7.

Theorem 24. For any of the above methods and any polynomial degree k > 0, we
have

t Uh(x,t)dx < O. (3.7)

Moreover, if the Hamiltonian H is a strictly convex or concave function, for any
k > 0, if the numerical solution given by the DG method converges, it converges to
the viscosity solution.
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Note that the above result trivially implies the TVB (total variation bounded)
property for the numerical solution Wh. Indeedb

TV(•h(t)) = 1  Uh(X,t) dx < b/- a 11 W'P IIL2(a,b).

This is a rather strong stability result, considering that it holds independently of the
degree of the polynomial approximation even when the derivative of the solution
Wx develops discontinuities and without the application of the generalized slope
limiter!

3.3 Computational results

In this section, we present the numerical experiments of Hu and Shu [43] showing
the performance of the RKDG method. Our main purpose is to asses the accuracy
of the method and see if the generalized slope limiter needs to be used. We display
the results obtained with the third approach to compute Wh.

The first test problem. One dimensional Burgers' equation:

t+(W. ±1)+ 0, in (-1, 1) x (0, T),
2

p(x, 0) = - cos(irx), Vx e (-1, 1),

with periodic boundary conditions.
The local Lax-Friedrichs flux is used. At T = 0. 5/7r2 , the solution is still smooth.

We list the errors and the numerical orders of accuracy in Table 3.1. We observe
that, except for the P1 case which seems to be only first order, pk for k > 1 seems
to provide close to (k + 1)-th order accuracy. The meshes used are all uniform, and
errors are computed at the middle point of each interval.

To investigate the accuracy problem further, we use non-uniform meshes ob-
tained by randomly shifting the cell boundaries in a uniform mesh in the range
[-0.1h, 0.1h]. In order to avoid possible superconvergence at cell centers, we also
give the "real" L2 error (computed by a 6-point Gaussian quadrature in each cell).
The results are shown in Table 3.2.

At T = 3.5/7r2 , the solution has developed a discontinuous derivative. In Fig.
3.1, we show the sharp corner-like numerical solution with 41 elements obtained
with pk for k = 1, 2,3,4 with a uniform mesh. Here and below, the solid line is
the exact solution, the circles are numerical solutions (only one point per element
is drawn).

The second test problem. One dimensional equation with a non-convex flux:

Wt - cos(WX + 1) = 0, in (-1, 1) x (0,T),

V (x, 0) = - cos(7rx), V x E (-1,1),

with periodic boundary conditions.
The local Lax-Friedrichs flux and uniform meshes are used. At T = 0.5/ir2 , the

solution is still smooth. The accuracy of the numerical solution is listed in Table
3.3. We observe similar accuracy as in the previous example.
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Table 3.1. Accuracy for 1D Burgers equation (uniform mesh), T = 0.5/ir2 .

pI p2• pp4

N L' error order L' error order L' error order L' error order
10 0.17E÷00 - 0.14E-02 - 0.21E-03 - 0.57E-05 -
20 0.78E-01 1.12 0.18E-03 2.92 0.13E-04 3.94 0.73E-06 2.97
40 0.35E-01 1.16 0.24E-04 2.97 0.75E-06 4.17 0.32E-07 4.52
80 0.16E-01 1.12 0.28E-05 3.08 0.43E-07 4.12 0.12E-08 4.79

160 0.76E-02 1.02 0.31E-061 3.19 0.25E-08 4.10 0.48E-10 4.59

P 1  p2 p3 p4

N L' error order L' error order L' error order L' error order
10 0.29E±00 - 0.24E-02 - 0.69E-03 - 0.13E-04 -
20 0.13E+00 1.13 0.33E-03 2.88 0.61E-04 3.51 0.16E-05 2.99
40 0.58E-01 1.15 0.37E-04 3.15 0.58E-05 3.39 0.13E-06 3.64
80 0.27E-01 1.11 0.48E-05 2.97 0.38E-06 3.93 0.59E-08 4.44

160 0.13E-01 1.07 0.59E-06 3.00 0.23E-07 4.07 0.25E-09 4.57

Table 3.2. Accuracy for 1D Burgers equation (non-uniform mesh), T = 0.5/ir2 .

P1  p2 p3 p4

N L' error order L2 error order L' error order L' error order
10 0.74E+00 -- 0.34E-02 - 0.32E-03 - 0.53E-04 -
20 0.34E+00 1.11 0.51E-03 2.76 0.24E-04 3.72 0.20E-05 4.71
40 0.15E+00 1.19 0.65E-04 2.96 0.17E-05 3.82 0.71E-07 4.84
80 0.67E-01 1.17 0.90E-05 2.86 0.13E-06 3.72 0.20E-08 5.15

160 0.31E-01 1.13 0.11E-05 3.02 0.81E-08 4.02 0.74E-10 4.76
p1 p2 p3 p4

N L' error order L' error order L' error order L' error order
10 0.53E+00 - 0.17E-02 - 0.23E-03 - 0.30E-05 -
20 0.24E+00 1.13 0.21E-03 3.05 0.14E-04 4.01 0.40E-06 2.89
40 0.11E+00 1.19 0.26E-04 2.99 0.78E-06 4.20 0.16E-07 4.65
80 0.47E-01 1.17 0.37E-05 2.82 0.47E-07 4.05 0.61E-09 4.70

160 0.21E-01 1.13 0.41E-06 3.16 0.27E-08 4.15 0.26E-10 4.56

P1  p2 p3 p4

N L' error order L' error order L' error order L' error order
10 0.62E+00 - 0.36E-02 - 0.69E-03 - 0.11E-04 -
20 0.29E÷00 1.11 0.47E-03 2.94 0.61E-04 3.52 0.16E-05 2.81
40 0.13E÷00 1.16 0.67E-04 2.80 0.47E-05 3.70 0.13E-06 3.64
80 0.58E-01 1.14 0.17E-04 2.01 0.62E-06 2.91 0.59E-08 4.45

160 0.27E-01 1.11 0.19E-05 3.11 0.31E-07 4.32 0.33E-09 4.17
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Fig. 3.1. One-dimensional Burgers' equation, T = 3.5/7r 2.

At T - 1.5/ir2 , the solution has developed corner-like discontinuity in the
derivative. The numerical result with 41 elements is shown in Fig. 3.2.

The third test problem. Riemann problem for the one dimensional equation
with a non-convex flux:

1 2 2

Wpt + - 1)(W. - 4) = 0, in (-1, 1) x (0, T),

W,(x,0) = -21x , Vx E (-1,1),

For this test problem, the use of the generalized slope limiter proved to be
essential since otherwise the approximate solution does not converge to the viscosity
solution; this is the only example in which we use the nonlinear limiting. We remark
that for the finite difference schemes, such nonlinear limiting or the adaptive stencil
in ENO is needed in most cases in order to enforce stability and to obtain non-
oscillatory results.

Numerical results at T = 1 with 81 elements, using the local Lax-Friedrichs
flux, is shown in Fig. 3.3. The results of using the Godunov flux is shown in Fig.
3.4. We can see that while for P1, the results of using two different monotone fluxes
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Table 3.3. Accuracy for 1D non-convex, H(u) = - cos(u + 1), T = 0.5/7r2 .

p1 p2• p3 p4

N L' error order L' error order L' error order L' error order
10 0.84E-01 - 0.10E-02 - 0.34E-03 - 0.24E-04 -
20 0.36E-01 1.23 0.15E-03 2.75 0.30E-04 3.49 0.13E-05 4.28
40 0.15E-01 1.26 0.21E-04 2.84 0.15E-05 4.33 0.59E-07 4.42
80 0.68E-02 1.14 0.27E-05 2.97 0.94E-07 4.00 0.21E-08 4.78

p1 p2 p3 p4

N L' error order L' error order L' error order L' error order
10 0.18E+00 - 0.15E-02 - 0.11E-02 - 0.99E-04 -20 0.73E-01 1.31 0.27E-03 2.43 0.22E-03 2.35 0.13E-04 2.95
40 0.31E-01 1.24 0.47E-04 2.54 0.18E-04 3.63 0.59E-06 4.44

801 0.14E-01 1.16 0.85E-05 2.47 0.14E-05 3.75 0.26E-07 4.49

are significantly different in resolution, this difference is greatly reduced for higher
order of accuracy. In most of the high order cases, the simple local Lax-Friedrichs
flux is a very good choice.

3.4 Concluding Remarks.

In this section, we have extended the RKDG method, originally devised for nonlin-
ear conservation laws, to the Hamilton-Jacobi equations. The extension was carried
out by exploiting the fact that the derivative of the solution of the Hamilton-Jacobi
equation satisfies a nonlinear conservation law.

The numerical experiments show that when polynomials of degree k are used,
the method is of order (k + 1) in L2, except when k = 1; this phenomenon remains
to be explained. Also, we have seen that the use of slope limiters was only needed
in the third test problem- otherwise the convergence to the viscosity solution did
not take place.

The scheme can be extended to the case of a bounded domain in a very simple
way. The extension of the scheme to the multidimensional case is not quite straight-
forward and will be carried out after we study how to define the RKDG method
for multidimensional conservation laws.
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Fig. 3.2. One dimension non-convex, H(u) = - cos(u + 1), T = 1.5/7r2 .
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4 The RKDG method for multi-dimensional systems

4.1 Introduction

In this section, we extend the RKDG methods to multidimensional systems:

ut + Vf(u) = 0, in/2 x (0, T), (4.1)

u(x,O) = uo(x), V x E/2, (4.2)

and periodic boundary conditions. For simplicity, we assume that 12 is the unit
cube.

This section is essentially devoted to the description of the algorithms and
their implementation details. The practitioner should be able to find here all the
necessary information to completely code the RKDG methods.

This section also contains two sets of numerical results for the Euler equations
of gas dynamics in two space dimensions. The first set is devoted to transient com-
putations and domains that have corners; the effect of using triangles or rectangles
and the effect of using polynomials of degree one or two are explored. The main
conclusions from these computations are that (i) the RKDG method works as well
with triangles as it does with rectangles and that (ii) the use of high-order polyno-
mials does not deteriorate the approximation of strong shocks and is advantageous
in the approximation of contact discontinuities.

The second set concerns steady state computations with smooth solutions. For
these computations, no generalized slope limiter is needed. The effect of (i) the
quality of the approximation of curved boundaries and of (ii) the degree of the
polynomials on the quality of the approximate solution is explored. The main con-
clusions from these computations are that (i) a high-order approximation of the
curve boundaries introduces a dramatic improvement on the quality of the solu-
tion and that (ii) the use of high-degree polynomials is advantageous when smooth
solutions are sought.

This section contains material from the papers [21], [20], and [28]. It also con-
tains numerical results from the paper by Bassi and Rebay [4] in two dimensions
and from the paper by Warburton, Lomtev, Kirby and Karniadakis [91] in three
dimensions.

4.2 The general RKDG method

The RKDG method for multidimensional systems has the same structure it has for
one-dimensional scalar conservation laws, that is,

- Set u° = Allh Pvh (uo);

- For nh = 0,..., N - 1 compute ur+1 as follows:
1. set u(0) = u;

2. for i = 1, ... , k + 1 compute the intermediate functions:

u() =Allh a ,ilu(h1)÷•Atn Lh (U

ý/=0
+1 (k+1)

3. set un+i =u

In what follows, we describe the operator Lh that results form the DG-space
discretization, and the generalized slope limiter AHh.
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The Discontinuous Galerkin space discretization To show how to dis-
cretize in space by the DG method, it is enough to consider the case in which u is
a scalar quantity since to deal with the general case in which u, we apply the same
procedure component by component.

Once a triangulation Th of J? has been obtained, we determine Lh(') as follows.
First, we multiply (4.1) by Vh in the finite element space Vh, integrate over the
element K of the triangulation -Th and replace the exact solution u by its approxi-
mation Uh E Vh:

d uh (t, X) Vh(x) dx + div f(Uh(t, x))vh(x) dx = 0, VVh G Vh. (4.3)

Integrating by parts formally we obtain

TtI f~I Uh(,X h()d f (Uh(t, X)) - e, K Vh (x)dF

-- ('KVuhh(t,X)).VVh(x) dx = 0, VVh E Vh,

where ne,K is the outward unit normal to the edge e. Notice that f(uh(t,x))

ne,K does not have a precise meaning, for Uh is discontinuous at x E e E OK.
Thus, as in the one dimensional case, we replace f(uh(t, x)) " ne,K by the function
he,K(Uh(t,X int(K)), Uh(t, Xext(K))). The function he,K (-, ") is any consistent two-
point monotone Lipschitz flux, consistent with f(u) • ne,K.

In this way we obtain

d ( heK(t,X) Vh(X)dF

It K e ~ EOKh.
-- fK(Uh (t, X))'- Vvh(x) dx=O0, V Vh E Vh-

Finally, we replace the integrals by quadrature rules that we shall choose as follows:

L

heK(t, x) Vh (x) d r Zwi he,K(t, X•e) V(XeI) )le, (4.4)
1=l

M

K) VVh(x)dx MZTw f(uh(t, XKj)) " VVh(XKj)IKI. (4.5)
j=1

Thus, we finally obtain, for each element K E Th, the weak formulation:
L

d f Uh(t, X) Vh(x)dx + Wi he,K(t,Xei)V(Xe1)lel
eEOK 1=1

M

-ZWjf(Uh(t,xKj)).VVh(XKj)IKI =0, Wh E Vh.
j=1

These equations can be rewritten in ODE form as Uh =Lh(Uh,-yh). This
defines the operator LhuUh), which is a discrete approximation of -div f(u). The
following result gives an indication of the quality of this approximation.
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Proposition 25. Let f(u) E Wk+2'-(Q), and set y = trace(u). Let the quadrature
rule over the edges be exact for polynomials of degree (2k + 1), and let the one over
the element be exact for polynomials of degree (2k). Assume that the family of
triangulations Y = {Th}h>o is regular, i.e., that there is a constant a such that:

hx >o, VKETh, VThE T, (4.6)
PK -

where hK is the diameter of K, and PK is the diameter of the biggest ball included
in K. Then, if V(K) D Pk(K), V K E Th:

IILh(u, Y) + div f(u))IIL-(n) < C hk+lf(U)Iwk+ 2, (Q).

For a proof, see [20].

The form of the generalized slope limiter AIIh. The construction of
generalized slope limiters ATIh for several space dimensions is not a trivial matter
and will not be discussed in these notes; we refer the interested reader to the paper
by Cockburn, Hou, and Shu [20].

In these notes, we restrict ourselves to displaying very simple, practical, and
effective generalized slope limiters AIlh which are closely related to the generalized
slope limiters AIlh of the previous section.

To compute AITIhUh, we rely on the assumption that spurious oscillations are
present in Uh only if they are present in its P1 part uh, which is its L 2-projection
into the space of piecewise linear functions Vh'. Thus, if they are not present in u ,

i.e., if
Uh = AI7h UhU,

then we assume that they are not present in Uh and hence do not do any limiting:

ATIh uh = ulh.

On the other hand, if spurious oscillations are present in the P1 part of the solution
uh, i.e., if

1u AITI uh,

then we chop off the higher order part of the numerical solution, and limit the
remaining P1 part:

AIh Uh = AIh u1.

In this way, in order to define Allh for arbitrary space Vh, we only need to actually
define it for piecewise linear functions Vh1 . The exact way to do that, both for the
triangular elements and for the rectangular elements, will be discussed in the next
section.

4.3 Algorithm and implementation details

In this section we give the algorithm and implementation details, including numer-
ical fluxes, quadrature rules, degrees of freedom, fluxes, and limiters of the RKDG
method for both piecewise-linear and piecewise-quadratic approximations in both
triangular and rectangular elements.
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Fluxes The numerical flux we use is the simple Lax-Friedrichs flux:

h,Kg(a,b) = 1 [f(a) . nKe + f(b) ne,K - ae,K (b- a)].

The numerical viscosity constant a,,K should be an estimate of the biggest eigen-
value of the Jacobian Of(Uh(X,t)) .ne,K for (x,t) in a neighborhood of the edge
e.

For the triangular elements, we use the local Lax-Friedrichs recipe:

- Take ae,K to be the larger one of the largest eigenvalue (in absolute value) of
9f(R2K) " n,K and that of -f(fgK,) n,,K, where UiK and iiK, are the means

of the numerical solution in the elements K and K' sharing the edge e.

For the rectangular elements, we use the local Lax-Friedrichs recipe :

- Take aeK to be the largest of the largest eigenvalue (in absolute value) of

5U (ig") )'h,,K, where ftKg, is the mean of the numerical solution in the element
K", which runs over all elements on the same line (horizontally or vertically,
depending on the direction of nh,K) with K and K' sharing the edge e.

Quadrature rules According to the analysis done in [20], the quadrature rules
for the edges of the elements, (4.4), must be exact for polynomials of degree 2k + 1,
and the quadrature rules for the interior of the elements, (4.5), must be exact for
polynomials of degree 2k, if pk methods are used. Here we discuss the quadrature
points used for P1 and p 2 in the triangular and rectangular element cases.

The rectangular elements For the edge integral, we use the following two
point Gaussian rule

lg(x)dx g (- 3)+g , (4.1)

for the P1 case, and the following three point Gaussian rule

g(x)dx ; [g (_ ) + g (3)] + g(0), (4.2)

for the P2 case, suitably scaled to the relevant intervals.
For the interior of the elements, we could use a tensor product of (4.1), with

four quadrature points, for the P1 case. But to save cost, we "recycle" the values
of the fluxes at the element boundaries, and only add one new quadrature point in
the middle of the element. Thus, to approximate the integral f1_ 1f' 1 g(x, y)dxdy,
we use the following quadrature rule:

Ig (-1,-13) +g(1 3
+g (4,3-1) +g

2 1)+ 0) (-. (,31)+2 g(0,0). (4.3)
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For the P 2 case, we use a tensor product of (4.2), with 9 quadrature points.

The triangular elements For the edge integral, we use the same two point or
three point Gaussian quadratures as in the rectangular case, (4.1) and (4.2), for
the P1 and p 2 cases, respectively.

For the interior integrals (4.5), we use the three mid-point rule

3

where mi are the mid-points of the edges, for the P1 case. For the P2 case, we
use a seven-point quadrature rule which is exact for polynomials of degree 5 over
triangles.

Basis and degrees of freedom We emphasize that the choice of basis and
degrees of freedom does not affect the algorithm, as it is completely determined by
the choice of function space V(h) , the numerical fluxes, the quadrature rules, the
slope limiting, and the time discretization. However, a suitable choice of basis and
degrees of freedom may simplify the implementation and calculation.

The rectangular elements For the P 1 case, we use the following expression for
the approximate solution Uh(X, y, t) inside the rectangular element [x-i_½, xj+3] x
[Yj- 3I Yj+]:

Uh (x, y, t) = U(t) + ux (t)¢i (x) + uy (t)Vj (y) (4.4)

where
¢i X) - xi y -y

/(X) = V' ¢r(y) - 7 (4.5)

and
Axi =Xi+3 -i-x_ Ayj =YJ+ 1 -- Y-½1

The degrees of freedoms, to be evolved in time, are then

ýUt), U-(t, UY(t).

Here we have omitted the subscripts ij these degrees of freedom should have, to
indicate that they belong to the element ij which is [xi- 16, x X [yj- ,YJ+½]'

Notice that the basis functions

are orthogonal, hence the local mass matrix is diagonal:

M-= AxiAy1 diag (1,, ,).
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For the p 2 case, the expression for the approximate solution Uh (X, y, t) inside
the rectangular element [Xi_½,Xi+½] × [yj_I, yj+½] is:

Uh(X,y,t) = TL(t) + Ux(t)Oi(x) + Uy(t)Oj(y)
+U-Y•(X)¢Ox)j(Y)

+ur•z(t) (¢(x) -

+unY(t) (O(•() _ , (4.6)

where €i (x) and Oj (y) are defined by (4.5). The degrees of freedoms, to be evolved
in time, are

ii(t), UX(t), UY(t), UX(t), UX(t), U(t).

Again the basis functions

1, O(X), (y), Oi(x)OA(Y), (Z) - 1 (2 Y) 1

axe orthogonal, hence the local mass matrix is diagonal:

(1144).
M = AxiAyj diag 1, 1, 1, 1' 45'

The triangular elements For the P1 case, we use the following expression for
the approximate solution uh (x, y, t) inside the triangle K:

3

Uh (XY, t) u(t)Pi (XY)

where the degrees of freedom ui (t) are values of the numerical solution at the
midpoints of edges, and the basis function Wi (x, y) is the linear function which
takes the value 1 at the mid-point mi of the i-th edge, and the value 0 at the
mid-points of the two other edges. The mass matrix is diagonal

M = Igldiag , 1, .

For the p 2 case, we use the following expression for the approximate solution
Uh (x, y, t) inside the triangle K:

6

Uh (X,Y, t) = i Z (t)i (X, Y)
i=1

where the degrees of freedom, ui(t), are values of the numerical solution at the
three midpoints of edges and the three vertices. The basis function ýj (x, y), is the
quadratic function which takes the value 1 at the point i of the six points mentioned
above (the three midpoints of edges and the three vertices), and the value 0 at the
remaining five points. The mass matrix this time is not diagonal.
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Limiting We construct slope limiting operators AI)h on piecewise linear functions
Uh in such a way-that the following properties are satisfied:

1. Accuracy: if Uh is linear then AI)h Uh = Uht.

2. Conservation of mass: for every element K of the triangulation 7T, we have:

fK Al 5h uh = K Uh"

3. Slope limiting: on each element K of T7, the gradient of AIlh Uh is not bigger
than that of Uh.

The actual form of the slope limiting operators is closely related to that of the
slope limiting operators studied in [24] and [20].

The rectangular elements The limiting is performed on u. and u, in (4.4),
using the differences of the means. For a scalar equation, u. would be limited
(replaced) by

f (u., iii+lj -- iij, iiij -- iii--1,j) (4.7)

where the function fn is the TVB corrected minmod function defined in the previous
section.

The TVB correction is needed to avoid unnecessary limiting near smooth ex-
trema, where the quantity ux or u, is on the order of O(Ax2) or O(Ay 2). For an
estimate of the TVB constant M in terms of the second derivatives of the function,
see [24]. Usually, the numerical results are not sensitive to the choice of M in a
large range. In all the calculations in this paper we take M to be 50.

Similarly, uy is limited (replaced) by

rh (uy, fiiij + - iaij, iaij - fiiij- 1).

with a change of Ax to Ay in (4.7).
For systems, we perform the limiting in the local characteristic variables. To

limit the vector ux in the element ij, we proceed as follows:

- Find the matrix R and its inverse R- 1, which diagonalize the Jacobian evalu-
ated at the mean in the element ij in the x-direction:

R- '101(ii') R = A,
Ou

where A is a diagonal matrix containing the eigenvalues of the Jacobian. Notice

that the columns of R are the right eigenvectors of - and the rows of

R-1 are the left eigenvectors.
- Transform all quantities needed for limiting, i.e., the three vectors u, j, fii+1 ,j -

fijj and fiij - i-l,j, to the characteristic fields. This is achieved by left multi-
plying these three vectors by R-1.

- Apply the scalar limiter (4.7) to each of the components of the transformed
vectors.

- The result is transformed back to the original space by left multiplying R on
the left.
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The triangular elements To construct the slope limiting operators for trian-
gular elements, we proceed as follows. We start by making a simple observation.
Consider the triangles in Figure 4.1, where mi is the mid-point of the edge on the
boundary of Ko and bi denotes the barycenter of the triangle Ki for i = 0, 1, 2,3.

K3  
--

b

K2

Fig. 4.1. Illustration of limiting.

Since we have that

mi - bo = al (bi - bo) + a2 (b2 - bo),

for some nonnegative coefficients a,, a2 which depend only on mi and the geometry,
we can write, for any linear function Uh,

Uh (MI) - Lh (bo) =al (Uh (bl) - Uh (bo)) + a2 (Uh (N) - Uh (bo)),

and since

UKi= K Uh = Uh(bi), i = 0,1,2,3,

we have that

uh(ml, KO) uh(mM) - 4flo

= ai (ftK - uKo) + a2 (uK 2 - K 0o)

AfL(mi, Ko).
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Now, we are ready to describe the slope limiting. Let us consider a piecewise linear
function uh, and let mi, i = 1,2,3 be the three mid-points of the edges of the
triangle K 0 . We then can write, for (x,y) E K 0 ,

3

Uh (X, Y) = Uh (Mi) WpdX, Y)
j~l

3

= UKo + Rh(miK O)Oi(Xy).
i=1

To compute AIIhuh, we first compute the quantities

,A = fn(fth(mi, Ko), v Ai(mi, Ko)),

where rl is the TVB modified minmod function and v > 1. We take v - 1.5 in our
numerical runs. Then, if E3 1 A = 0, we simply set

3

AIIhuh(x,y) = UKg + EA• Wi(X,y).
i=l

If i= Ai : 0, we compute

3 3

pos - E max(0, Ai), neg = E max(0, -Ai),
i=1 i=l

and set 9 •m 1 neg\ ( pos'\
0+ = min 1, , , 0- = min 1, ne-g "

po / ',) neg /
Then, we define

3

Ar7hUh(X, Y) = fK, +Z iWi(X, Y),
i= l

where
Aj = 0+ max(0, Ai) - 0- max(0, -Ai).

It is very easy to see that this slope limiting operator satisfies the three properties
listed above.

For systems, we perform the limiting in the local characteristic variables. To
limit Aj, we proceed as in the rectangular case, the only difference being that we
work with the following Jacobian

af•_ iK.) mi - boTUfgo imi - bol"

4.4 Computational results: Transient, nonsmooth solutions

In this section we present several numerical results obtained with the P1 and P2

(second and third order accurate) RKDG methods with either rectangles or trian-
gles in the triangulation. These are standard test problems for Euler equations of
compressible gas dynamics.
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The double-Mach reflection problem Double Mach reflection of a strong
shock. This problem was studied extensively in Woodward and Colella [921 and
later by many others. We use exactly the same setup as in [92], namely a Mach 10
shock initially makes a 600 angle with a reflecting wall. The undisturbed air ahead
of the shock has a density of 1.4 and a pressure of 1.

For the rectangle based triangulation, we use a rectangular computational do-
main [0, 4] x [0, 1], as in [92]. The reflecting wall lies at the bottom of the computa-
tional domain for1 < x < 4. Initially a right-moving Mach 10 shock is positioned
at x = 6, y = 0 and makes a 600 angle with the x-axis. For the bottom boundary,
the exact post-shock condition is imposed for the part from x = 0 to x = 1, to
mimic an angled wedge. Reflective boundary condition is used for the rest. At the
top boundary of our computational domain, the flow values are set to describe the
exact motion of the Mach 10 shock. Inflow/outflow boundary conditions are used
for the left and right boundaries. As in [92], only the results in [0, 3] x [0, 1] are
displayed.

For the triangle based triangulation, we have the freedom to treat irregular
domains and thus use a true wedged computational domain. Reflective boundary
conditions are then used for all the bottom boundary, including the sloped portion.
Other boundary conditions are the same as in the rectangle case.

Uniform rectangles are used in the rectangle based triangulations. Four different
meshes are used: 240 x 60 rectangles (Ax = Ay =-L) 480 x 120 rectangles (Ax =

Ay --L); 960 x 240 rectangles (Ax = Ay= -); and 1920 x 480 rectangles
(Ax= Ay = &)" The density is plotted in Figure 4.2 for the P1 case and in 4.3
for the p 2 case.

To better appreciate the difference between the P 1 and p 2 results in these
pictures, we show a "blowed up" portion around the double Mach region in Figure
4.4 and show one-dimensional cuts along the line y = 0.4 in Figures 4.5 and 4.6.
In Figure 4.4, w can see that P2 with Ax = Ay = has qualitatively the same
resolution as P 1 with Ax = Ay= -- , for the fine details of the complicated
structure in this region. p 2 with Ax = Ay = gives a much better resolution
for these structures than P1 with the same number of rectangles.

Moreover, from Figure 4.5, we clearly see that the difference between the results
obtained by using P1 and p 2 , on the same mesh, increases dramatically as the mesh
size decreases. This indicates that the use of polynomials of high degree might be
beneficial for capturing the above mentioned structures. From Figure 4.6, we see
that the results obtained with P 1 are qualitatively similar to those obtained with p 2

in a coarser mesh; the similarity increases as the meshsize decreases. The conclusion
here is that, if one is interested in the above mentioned fine structures, then one can
use the third order scheme P2 with only half of the mesh points in each direction
as in P1. This translates into a reduction of a factor of 8 in space-time grid points
for 2D time dependent problems, and will more than off-set the increase of cost
per mesh point and the smaller CFL number by using the higher order p 2 method.
This saving will be even more significant for 3D.

The optimal strategy, of course, is to use adaptivity and concentrate triangles
around the interesting region, and/or change the order of the scheme in different
regions.
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The forward-facing step problem Flow past a forward facing step. This
problem was again studied extensively in Woodward and Colella [92] and later by
many others. The set up of the problem is the following: A right going Mach 3 uni-
form flow enters a wind tunnel of 1 unit wide and 3 units long. The step is 0.2 units
high and is located 0.6 units from the left-hand end of the tunnel. The problem is
initialized by a uniform, right-going Mach 3 flow. Reflective boundary conditions
are applied along the walls of the tunnel and in-flow and out-flow boundary con-
ditions are applied at the entrance (left-hand end) and the exit (right-hand end),
respectively.

The corner of the step is a singularity, which we study carefully in our numerical
experiments. Unlike in [92] and many other papers, we do not modify our scheme
near the corner in any way. It is well known that this leads to an errorneous entropy
layer at the downstream bottom wall, as well as a spurious Mach stem at the
bottom wall. However, these artifacts decrease when the mesh is refined. In Figure
4.7, second order P 1 results using rectangle triangulations are shown, for a grid
refinement study using Ax = Ay = 1o, Ax = Ay = ' , Ax = Ay = , and
Ax = Ay - as mesh sizes. We can clearly see the improved resolution (especially
at the upper slip line from the triple point) and decreased artifacts caused by the
corner, with increased mesh points. In Figure 4.8, third order p 2 results using the
same meshes are shown.

To have a better idea of the nature of the singularity at the corner, we display
the values of the density and the entropy along the line y = 0.2; note that the corner
is located on this line at x = 0.6. In Figure 4.9, we show the results obtained with
P1 and in Figure 4.10, the results obtained with p 2. At the corner (x = 0.6), we
can see that there is a jump both in the entropy and in the density. As the meshsize
decreases, the jump in the entropy does not vary significantly; however, the jump
in the density does. The sharp decrease in the density right after the corner can
be interpreted as a cavitation effect that the scheme seems to be able to better
approximate as the meshsize decreases.

In order to verify that the erroneous entropy layer at the downstream bottom
wall and the spurious Mach stem at the bottom wall are both artifacts caused by
the corner singularity, we use our triangle code to locally refine near the corner
progressively; we use the meshes displayed in Figure 4.11. In Figure 4.12, we plot
the density obtained by the P1 triangle code, with triangles (roughly the resolution
of Ax = Ay = 4, except around the corner). In Figure 4.13, we plot the entropy
around the corner for the same runs. We can see that, with more triangles concen-
trated near the corner, the artifacts gradually decrease. Results with p 2 codes in
Figures 4.14 and 4.15 show a similar trend.

4.5 Computational results: Steady state, smooth solutions

In this section, we present some of the numerical results of Bassi and Rebay [4]
in two dimensions and Warburton, Lomtev, Kirby and Karniadakis [91] in three
dimensions.

The purpose of the numerical results of Bassi and Rebay [4] we are presenting is
to assess (i) the effect of the quality of the approximation of curved boundaries and
of (ii) the effect of the degree of the polynomials on the quality of the approximate
solution. The test problem we consider here is the two-dimensional steady-state,
subsonic flow around a disk at Mach number M.. = 0.38. Since the solution is
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smooth and can be computed analytically, the quality of the approximation can be
easily assessed.

In the figures 4.16, 4.17, 4.18, and 4.19, details of the meshes around the disk are
shown together with the approximate solution given by the RKDG method using
piecewise linear elements. These meshes approximate the circle with a polygonal. It
can be seen that the approximate solution are of very low quality even for the most
refined grid. This is an effect caused by the kinks of the polygonal approximating
the circle.

This statement can be easily verified by taking a look to the figures 4.20, 4.21,
4.22, and 4.23. In these pictures the approximate solutions with piecewise linear,
quadratic, and cubic elements are shown; the meshes have been modified to render
exactly the circle. It is clear that the improvement in the quality of the approxi-
mation is enormous. Thus, a high-quality approximation of the boundaries has a
dramatic improvement on the quality of the approximations.

Also, it can be seen that the higher the degree of the polynomials, the better
the quality of the approximations, in particular from figures 4.20 and 4.21. In [4],
Bassi and Rebay show that the RKDG method using polynomilas of degree k
are (k + 1)-th order accurate for k = 1, 2,3. As a consequence, a RKDG method
using polynomials of a higher degree is more efficient than a RKDG method using
polynomials of lower degree.

In [91], Warburton, Lomtev, Kirby and Karniadakis present the same test prob-
lem in a three dimensional setting. In Figure 4.24, we can see the three-dimensional
mesh and the density isosurfaces. We can also see how, while the mesh is being kept
fixed and the degree of the polynomials k is increased from 1 to 9, the maximum
error on the entropy goes exponentialy to zero. (In the picture, a so-called 'mode'
is equal to k + 1).

4.6 Concluding remarks

In this section, we have extended the RKDG methods to multidimensional systems.
We have described in full detail the algorithms and displayed numerical results
showing the performance of the methods for the Euler equations of gas dynamics.

The flexibility of the RKDG method to handle nontrivial geometries and to
work with different elements has been displayed. Moreover, it has been shown that
the use of polynomials of high degree not only does not degrade the resolution of
strong shocks, but enhances the resolution of the contact discontinuities and renders
the scheme more efficient on smooth regions.

Next, we extend the RKDG methods to convection-dominated problems.
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Fig. 4.16. Grid "16 x 8" with a piecewise linear approximation of the circle (top)
and the corresponding solution (Mach isolines) using P1 elements (bottom).
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~i

Fig. 4.17. Grid "32 x 8" with a piecewise linear approximation of the circle (top)
and the corresponding solution (Mach isolines) using P1 elements (bottom).
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Fig. 4.18. Grid "64 x 16" with a piecewise linear approximation of the circle (top)
and the corresponding solution (Mach isolines) using P1 elements (bottom).
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Fig. 4.19. Grid "128 x 32" a piecewise linear approximation of the circle (top) and
the corresponding solution (Mach isolines) using P1 elements (bottom).
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Fig. 4.20. Grid "16 x 4" with exact rendering of the circle and the corresponding
p1 (top), p 2 (middle), and P3 (bottom) approximations (Mach isolines).
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Fig. 4.21. Grid "32 x 8" with exact rendering of the circle and the corresponding
pl (top), P 2(middle), and P3 (bottom) approximations (Mach isolines).
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Fig. 4.22. Grid "64 x 16" with exact rendering of the circle and the corresponding
pl (top), P 2 (middle), and P3 (bottom) approximations (Mach isolines).
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Fig. 4.23. Grid "128 x 32" with exact rendering of the circle and the corresponding
P 1 (top), P2 (middle), and p 3 (bottom) approximations (Mach isolines).
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Fig. 4.24. Three-dimensional flow over a semicircular bump. Mesh and density
isosurfaces (top) and history of convergence with p-refinement of the maximum
entropy generated (bottom). The degree of the polynomial plus one is plotted on
the 'modes' axis.
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5 The Hamilton-Jacobi equations in several space
dimensions

5.1 Introduction

In this chapter, we consider the RKDG method for multidimensional Hamilton-
Jacobi equations. The model problem we consider is the following:

V + H(WoWY)=0, in (0,1)2 x (0, T), (5.1)

W(X,y, 0) = 'o(x,y), V (x,y) E (0,1)2, (5.2)

where we take periodic boundary conditions. The material in this section is based
in the work of Hu and Shu [43].

5.2 The RKDG method

As in the one-dimensional case, the main idea to extend the RKDG method to this
case, is to realize that u = V.. and v = Vy satisfy the following problem:

ut + H(u,v), = 0, in (0,1)2 x (0,T), (5.3)

vt + H(u, v), = 0, in (0, 1)2 x (0, T), (5.4)

u(x, y, 0) = (po). (x, y), V (x,y) E (0,1)2, (5.5)

v(x,y,0) = (0o)i,(x,y), V (x,y) E (0,1)2, (5.6)

and that V can be computed from u and v by solving the following problem:

V = -H(u, v), in (0,1) x (0, T), (5.7)

V(x,0) =- o(x), V x E (0, 1). (5.8)

Again, a straightforward application of the RKDG method to (5.3), (5.5), produces
an approximation Uh to u = W.; and a straightforward application of the RKDG
method to (5.4), (5.6), produces an approximation vh to v = ýo. Both Uh and Vh

are taken to be piecewise polynomials of degree (k - 1). Then, Wh is computed in
one of the following ways:

(i) Take 'ph(, t) in Vhk such that

VK E Th, wh E Pk(K) :
. Ot Vh (X, Y, t) Wh (x) dx dy Z-- K H (uh(x, t), Vh (X, Y) ) Wh (X, y) dx dy

(ii) Take Wh (-, t) in Vhk such that, VK E Th:

IVh - (Uh,Vh) IIL2(K) = min VV - (Uh,Vh)IIL2(K).
,PEPk(K)
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This determines 'ph up to a constant. To find this constant, we impose the following
condition:

VK E Th:

LK ,(x, y, 0) dxdy L 'K ,o(x, y) dxdy.

(iii) Pick the element Kj and determine the values of 'Ph on it in such a way
that

II V^h - (Uh,Vh) IIL2(Kj) = mi In VV - (Uh,Vh) JIL2(Kj).
IPEPh(K)

and that

Wt- f~j(5.9)

JKj (xy,0) dxdy = JKj p °(xy)dxdy.

Then, compute Wh as follows:

W(B,t) = 'P(A,t) + fA (W. dx + 'V dy). (5.10)

to determine the missing constant. The path should be taken to avoid crossing a
derivative discontinuity, if possible.

We remark again that, in the third approach, the recovered values of 'h depend
on the choice of the starting point A as well as the integration path. However
this difference is on the level of truncation errors and does not affect the order of
accuracy as is shown in the computational results we show next.

5.3 Computational results

The purpose of the numerical experiments we report in this section is to asses the
accuracy of the method, to see if the generalized slope limiter is actually needed,
and to evaluate the effect of changing the integration path. The third approach is
used.

First test problem. Two dimensional Burgers' equation:

•t + (V. + 1)2 = 0, in (-2,2)2 x (0, T),2

W(x, y, 0) = -cos (ir(X+ ) V (x,y) E (-2,2)2,

with periodic boundary conditions.
We first use uniform rectangular meshes and the local Lax-Friedrichs flux. At

T = 0.5/7r2 , the solution is still smooth. The errors (computed at the center of the
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cells) and orders of accuracy are listed in Table 5.1. It seems that only k-th order of
accuracy is achieved when Vi is a piecewise polynomial of degree k. Next, as in the
one dimensional case, we use non-uniform rectangular meshes obtained from the
tensor product of one dimensional nonuniform meshes (the meshes in two directions
are independent). Again, we give the "real" L2-errors computed by a 6 x 6 point
Gaussian quadrature as well. The results are shown in Table 5.2.

The results in Tables 5.1 and 5.1 are obtained by updating the element at the
left-lower corner with time, and then taking an integration path consisting of line
segments starting from the corner and parallel to the x-axis first, then vertically to
the point. To further address the issue of the dependency of the computed values of
the solution V on the integration path and starting point, we use another path which
starts vertically, then parallelly with the x-axis to reach the point. In Table 5.3, we
list the difference of two recovered solutions Wp from these two different integration
paths, for the non-uniform mesh cases. We can see that these differences are at the
levels of local truncation errors and decay in the same order as the errors. Thus the
choice of integration path in recovering V does not affect accuracy.

At T = 1.5/.72 , the solution has discontinuous derivatives. Fig. 5.1 is the graph
of the numerical solution with 40 x 40 elements (uniform mesh).

Finally we use triangle based triangulation, the mesh with h -- is shown
in Fig. 5.2. The accuracy at T = 0.5/ir2 is shown in Table 5.4. Similar accuracy
pattern is observed as in the rectangular case. The result at T = 1.5/ir2 , when the
derivative is discontinuous, is shown in Fig. 5.3.

Table 5.1. Accuracy for 2D Burgers equation, uniform rectangular mesh, T -
0.5/ir 2.

p1 p2 p3

N x N L error order L' error order L' error order

10 x 10 8.09E-02 - 8.62E-03 - 3.19E-03 --
20 x 20 3.36E-02 1.268 1.72E-03 2.325 3.49E-04 3.192
40 x 40 1.48E-02 1.183 3.93E-04 2.130 6.64E-05 2.394
80 x 80 6.88E-03 1.105 9.74E-05 2.013 1.14E-05 2.542

160 x 160 3.31E-03 1.056 2.45E-05 1.991 1.68E-0612.763
p1 p2 p3

N x N L' error order L' error order L' error order
10 x 10 2.62E-01 - 3.56E-02 - 8.65E-03 -
20 x 20 1.14E-01 1.201 8.40E-03 2.083 1.16E-03 2.899
40 x 40 5.OOE-02 1.189 2.02E-03 2.056 1.98E-04 2.551
80 x 80 2.39E-02 1.065 4.92E-04 2.038 3.13E-05 2.661

160 x 160 1.16E-02 1.043 1.21E-04 2.024 4.41E-06 2.827
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Table 5.2. Accuracy for 2D Burgers equation, non-uniform rectangular mesh, T =

0.5/7r2 .

pI p2 p3

N x N L' error order L' error order L' error order
10 x 10 4.47E-01 - 6.28E-02 - 1.61E-02 -
20 x 20 1.83E-01 1.288 1.50E-02 2.066 2.06E-03 2.966
40 x 40 8.01E-02 1.192 3.63E-03 2.047 3.48E-04 2.565
80 x 80 3.82E-02 1.068 9.17E-04 1.985 6.03E-05 2.529

160 × 160 1.87E-02 1.031 2.34E-04 1.970 8.58E-06 2.813
p1 p2 p3

N x N L' error order L' error order L1 error order
10 x 10 8.16E-02 - 9.16E-03 - 3.39E-03 -

20 x 20 3.41E-02 1.259 2.09E-03 2.132 4.12E-04 3.041
40 x 40 1.50E-02 1.185 5.21E-04 2.004 7.03E-05 2.551
80 x 80 7.16E-03 1.067 1.42E-04 1.875 1.24E-05 2.503

160 x 160 3.50E-03 1.033 3.85E-05 1.883 1.76E-0612.817
pI p2 p3

N x N L' error order L' error order L' error order
10 x 10 2.83E-01 - 4.68E-02 - 1.OOE-02 -
20 x 20 1.25E-01 1.179 1.23E-02 1.928 1.39E-03 2.847
40 x 40 5.74E-02 1.123 3.54E-03 1.797 2.29E-04 2.602
80 x 80 2.78E-02 1.046 1.15E-03 1.622 5.11E-05 2.164

160 x 160 1.42E-0210.969 2.72E-04 2.080 7.16E-0612.835

Table 5.3. Differences of the solution V recovered by two different integration
paths, non-uniform mesh, Burgers equation.

p1 p2• p3

N x N L' error order L' error order L' error order
10 x 10 8.61E-03 - 2.90E-03 - 1.15E-03 -
20 x 20 4.64E-03 0.892 1.28E-03 1.180 2.44E-04 2.237
40 x 40 2.54E-03 0.869 4.12E-04 1.635 3.76E-05 2.698
80 x 80 1.81E-03 0.489 1.39E-04 1.568 6.71E-06 2.486

160 x 160 1.09E-03 0.732 3.66E-05 1.925 8.79E-0712.932
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Table 5.4. Accuracy for 2D Burgers equation, triangular mesh, T = 0.5/7r2.

P 2  P3

h L -error order L' error order L' error order L' error order
1 5.48E-02 -- 1.52E-01 - 1.17E-02 - 2.25E-02 -

1/2 1.35E-02 2.02 6.26E-02 1.28 1.35E-03 3.12 4.12E-03 2.45

1/42.94E-03 2.20 1.55E-02 2.01 1.45E-04 3.22 4.31E-04 3.26
1/86.68E-04 2.14 3.44E-03 2.17 1.71E-05 3.08 7.53E-05 2.52

Second test problem. We consider the following problem:

ýOt - cos(,P. + ýPy + 1) = 0, in (-2,2)2 x (0, T),

x(x,y,o) = -cos V (x,y) E(-2,2)2,

with periodic boundary conditions.

For this example we use uniform rectangular meshes. The local Lax-Friedrichs
flux is used. The solution is smooth at T = 0.5/7r 2. The accuracy of the numerical
solution is shown in Table 5.5.

Table 5.5. Accuracy, 2D, H(u, v) = -cos(u + v + 1), T = 0.5/7r2 .

N x N L' error order L' error order L' error order
10 x 10 6.47E-02 - 8.31E-03 - 1.35E-02 -
20 x 20 2.54E-02 1.349 1.93E-03 2.106 1.57E-03 3.104
40 x 40 1.05E-02 1.274 4.58E-04 2.075 2.39E-04 2.716
80 x 80 4.74E-03 1.147 1.13E-04 2.019 2.89E-05 3.048

160 x 160 2.23E-03 1.088 2.83E-05 1.997 4.38E-06 2.722
p1 p2 p_

N x N L' error order L' error order L' error order
10 x 10 1.47E-01 - 1.88E-02 - 2.36E-02 -

20 x 20 6.75E-02 1.123 7.34E-03 1.357 3.44E-03 2.778
40 x 40 2.65E-02 1.349 1.83E-03 2.004 4.59E-04 2.906
80 x 80 1.18E-02 1.167 4.55E-04 2.008 5.78E-05 2.989

160 x 160 2.23E-03 1.088 1.13E-0412.010 8.54E-06 2.759

The solution has developed a discontinuous derivative at T = 1.5/ir . Results
with 40 x 40 elements are shown in Fig. 5.4.
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Third test problem. The level set equation in a domain with a hole:

Wt + sign(so)( ý + W -1) =0, in fl x (0, T),

Wo(X, y, 0) =-Cos ,rx+Y V (X, y) E S2,

where ={(x, y): 1/2 < xV2 + y2 <1}.

This problem was introduced in [84]. Its exact solution W has the same zero level
set as Wo, and the steady state solution is the distance function to that zero level
curve. We use this problem to test the effect on the accuracy of the approximation
of using various integration paths (5.10) when there is a hole in the region. Notice
that the exact steady state solution is the distance function to the inner boundary
of domain when boundary condition is adequately prescribed. We compute the time
dependent problem to reach a steady state solution, using the exact solution for
the boundary conditions of W and W,. Four symmetric elements near the outer
boundary are updated by (5.9), all other elements are recovered from (5.10) by the
shortest path to the nearest one of above four elements. The results are shown in
Table 5.6. Also shown in Table 5.6 is the error (difference) between the numerical
solution w thus recovered, and the value of W after another integration along a
circular path (starting and ending at the same point in (5.10)). We can see that
the difference is small with the correct order of accuracy, further indicating that
the dependency of the recovered solution p on the integration path is on the order
of the truncation errors even for such problems with holes. Finally, the mesh with
1432 triangles and the solution with 5608 triangles are shown in Fig. 5.5.

Table 5.6. Errors for the level set equation, triangular mesh with p 2 .

Errors for the Solution Errors by Integration Path
N L' error order L' error order L' error order L' error order

403 1.02E-03 -4 1.32E-03 - 1.61E-04 - 5.71E-04 -
1432 1.23E-04 3.05 2.73E-04 2.27 5.84E-05 1.46 1.68E-04 1.78
5608 1.71E-05 2.85 3.18E-05 3.10 9.32E-06 2.65 4.36E-05 1.95

22238 2.09E-06 3.03 5.01E-06 2.67 1.43E-06 2.70 6.63E-06 2.72

Fourth test problem. Two dimensional Riemann problem:

pt + sin(W +,py) = 0, in (-1,1)1 x (0, T),

y(x, Y, 0) = 7r(lyl - lxl), V (x, y) E (-1,1)',

For this example we use a uniform rectangular mesh with 40 x 40 elements.
The local Lax-Friedrichs flux is used. As was mentioned in Example 4.3, we have
found out that a nonlinear limiting is needed, for convergence towards an viscosity
solution. We show the numerical solution at T = 1 in Fig. 5.6.
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Fifth test problem. A problem from optimal control [73]:

1.2
Wt + (sin y)cpx + (sinx + sign(,D))p, = sin Y + (1 - cos x),

W(x, y, 0) = 0,

where the space domain is (-7r, 7r)
2 and the boundary conditions are periodic. We

use a uniform rectangular mesh of 40 x 40 elements and the local Lax-Friedrichs flux.
The solution at T = 1 is shown in Fig. 5.7, while the optimal control w = sign(y,)
is shown in Fig. 5.8.

Notice that our method computes V•o as an independent variable. It is very
desirable for those problems in which the most interesting features are contained
in the first derivatives of W, as in this optimal control problem.

Sixth test problem. A problem from computer vision [78]:

Wt+ I(X' y) Vl+ ý2.+ W2-1=0, in (_1, 1)2 x (0, T),

W(x,y,0) = 0, V (x,y) E (-1,1)2,

with W- = 0 as the boundary condition. The steady state solution of this problem is
the shape lighted by a source located at infinity with vertical direction. The solution
is not unique if there are points at which I(x, y) = 1. Conditions must be prescribed
at those points where I(x, y) = 1. Since our method is a finite element method, we
need to prescribe suitable conditions at the correspondent elements. We take

I(x,y) = 1/ /1 + (1 - IxI)2 + (1 - lyj)2 (5.1)

The exact steady solution is W(x,y,oo) = (1 - IxI)(1 - IyI). We use a uniform
rectangular mesh of 40 x 40 elements and the local Lax-Friedrichs flux. We impose
the exact boundary conditions for u = •0, v = •Y from the above exact steady
solution, and take the exact value at one point (the lower left corner) to recover
W. The results for p 2 and p 3 are presented in Fig. 5.3, while Fig. 5.9 contains the
history of iterations to the steady state.

Next we take

I(x,y) = 1/ /l + 4y 2(l - X2
)

2 + 4x 2(1 - y2) 2  (5.2)

The exact steady solution is W(x, y, o0) = (1 - x2 )(1 -_y
2). We again use a uniform

rectangular mesh of 40 x 40 elements, the local Lax-Friedrichs flux, impose the exact
boundary conditions for u = W, v = Wy from the above exact steady solution, and
take the exact value at one point (the lower left corner) to recover W. A continuation
method is used, with the steady solution using

1.t(x, y) = l//1 + 4y 2(1 - X2
)

2 + 4x 2(1 - y2) 2 + e (5.3)

for bigger E as the initial condition for smaller -. The sequence of e used are E -
0.2,0.05, 0. The results for p 2 and p 3 are presented in Fig. 5.10.
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Fig. 5.1. Two dimension Burgers' equation, rectangular mesh, T=1.5/ir 2 ,
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Fig. 5.2. Triangulation for two dimensional Burgers equation, h =14
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p2, h 1/8 P', h=1/8

Fig. 5.3. Two dimension Burgers' equation, triangular mesh, T=l.5/ii- 2 .

p2, 40x40 elements P3, 40x40 elements

Fig. 5.4. Two dimensional, H(u, v) = cos(u + v + 1), T =1.5/7r.
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Mesh: 1432 triangles Solution: 5608 triangles

-o'

Fig. 5.5. The level set equation, p 2.

p2, 40x40 elements P3, 40x40 elements

Fig. 5.6. Two dimensional Riemann problem, H(u, v) = sin(u + v), T = 1.



Discontinuous Galerkin Methods 171

P2, 40x40 elements p 3, 40x40 elements

Fig. 5.7. Control problem, T = 1.
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Fig. 5.8. Control problem, T =1, w = sign(W,).
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Fig. 5.9. Computer vision problem, history of iterations.

P2 , 40x40 elements p2 , 40x40 elements
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Fig. 5.10. Computer vision problem, qo(x, y, co) = (1 - x 2 )(1 - y2).
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6 Convection diffusion: The LDG method

6.1 Introduction

In this chapter, which follows the work by Cockburn and Shu [27], we restrict
ourselves to the semidiscrete LDG methods for convection-diffusion problems with
periodic boundary conditions. Our aim is to clearly display the most distinctive
features of the LDG methods in a setting as simple as possible; the extension of the
method to the fully discrete case is straightforward. In §2, we introduce the LDG
methods for the simple one-dimensional case d = 1 in which

F(u, Du) = f(u) - a(u) Ou,

u is a scalar and a(u) > 0 and show, in §3, some preliminary numerical results
displaying the performance of the method. In this simple setting, the main ideas of
how to device the method and how to analyze it can be clearly displayed in a simple
way. Thus, the L2-stability of the method is proven in the general nonlinear case
and the rate of convergence of (Ax)k in the L' (0, T;L2 )-norm for polynomials of
degree k > 0 in the linear case is obtained; this estimate is sharp. In §4, .we extend
these results to the case in which u is a scalar and

Fj (u, Du) = fi (u) - E aij (u) 0,., u,

1<j<d

where aij defines a positive semidefinite matrix. Again, the L2-stability of the
method is proven for the general nonlinear case and the rate of convergence of
(Ax)k in the L' (0, T;L2)-norm for polynomials of degree k > 0 and arbitrary tri-
angulations is proven in the linear case. In this case, the multidimensionality of the
problem and the arbitrariness of the grids increase the technicality of the analysis
of the method which, nevertheless, uses the same ideas of the one-dimensional case.
In §5, the extension of the LDG method to multidimensional systems is briefly
described and in §6, some numerical results for the compressible Navier-Stokes
equations from the paper by Bassi and Rebay [3] and from the paper by Lomtev
and Karniadakis [63] are presented.

6.2 The LDG methods for the one-dimensional case

In this section, we present and analyze the LDG methods for the following simple
model problem:

,9tu+,9.(f(u)-a(u)a~u)=O inQ,(61

u(t = 0) = u0 on (0, 1), (6.2)

where Q = (0, T) x (0, 1), with periodic boundary conditions.

General formulation and main properties To define the LDG method,
we introduce the new variable q = t 0, u and rewrite the problem (6.1), (6.2)
as follows:

Otu+Ox(f(u)-V.fiJJ• q)=O inQ, (6.3)

q-0.g(u)=0 inQ, (6.4)

u(t = 0) = uo, on (0, 1), (6.5)
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where g(u) = fu V"'j ds. The LDG method for (6.1), (6.2) is now obtained by
simply discretizing the above system with the Discontinuous Galerkin method.

To do that, we follow [24] and [21]. We define the flux h = (hu, hq )t as follows:

h(u, q) = (f(u) - A(u) q, -g(u) )'. (6.6)

For each partition of the interval (0, 1), { Xj+1 1 2 }j=o, we set, for j = 1,... , N:

Ij = (X=-12, Xj+112), Axj = xj 11 2 - Xj-1/2, (6.7)

and

Ax = max Axj. (6.8)
1<j<N

We seek an approximation Wh = (uh, qh)t to W = (u, q)t such that for each time
t E [0, T], both Uh(t) and qh(t) belong to the finite dimensional space

Vh = Vhk = {v E LI(o, 1) : vji, E Pk(Ij), j = N,.,}, (6.9)

where pk (I) denotes the space of polynomials in I of degree at most k. In order
to determine the approximate solution (Uh, qh), we first note that by multiplying
(6.3), (6.4), and (6.5) by arbitrary, smooth functions vu, vq, and vi, respectively,
and integrating over Ij, we get, after a simple formal integration by parts in (6.3)
and (6.4),

fI• Ot u(x, t) v. (x) dx - fl, hu (w(x, t)) 0. v. (x) dx

-hu(w(Xj+1/2, t))vu(X-j+l/2) - hu(w(xj-1/ 2 ,t)) vu(xi_1/2) = 0, (6.10)

f1 j q(x, t) vq(x) dx - fIj hq(w(x, t)) Ox vq(x) dx

+hq(w(xj+l/2, t)) vq(x-+11 2 ) - hq(W(Xj.l/2, t)) vq(x+l/2 ) 0, (6.11)

fij u(x, O) vi(x) dx = f1l uo(x) vi(x) dx. (6.12)

Next, we replace the smooth functions vu, Vq, and vi by test functions Vh,u, Vh,q, and
Vh,i, respectively, in the finite element space Vh and the exact solution w = (u, q)t
by the approximate solution Wh = (Uh, qh)t. Since this function is discontinuous
in each of its components, we must also replace the nonlinear flux h(w(xj+1/ 2, t))
by a numerical flux fi(w)j+ 1 2(t) = (h. (wh)j+1/2(t), hq(Wh)j+1/2(t)) that will be
suitably chosen later. Thus, the approximate solution given by the LDG method is
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defined as the solution of the following weak formulation:

V Vh,u E pk (Ij) :

4 Ot Uh(X,t) vh,,(x)dx - fij h.(wh(XtW)O•Vh,.(x)dx

"+hu(Wh)j+l/2(t) Vh,u(X.• 1 / 2 ) - hu(wh)j-1/2(t) Vh,u(X+- 1 / 2 ) = O, (6.13)

VVh,q E pk(Ij) :

f qh(x,t)vh,q(x)dx- hq(Wh(X,t)) 9 Vh,,(x)dx

+hq(Wh)j±1/2(W Vhq(Xj+1/ 2 ) - hq(Wh)j-1/2(t)Vhq(Xj.-1 2 )= 0, (6.14)

V Vh,i E Pk(Ij) :

j( Uh(X, 0) - UO(X) )Vh,i(x) dx = 0 (6.15)

It only remains to choose the numerical flux fi(Wh)j+1/2(t). We use the notation:

[p]=~ ~~ _-, p:,• -- (- •P- ' 1jb/2" -= p(X :' 1/2).

To be consistent with the type of numerical fluxes used in the RKDG methods, we
consider numerical fluxes of the form

fi(Wh )j+l/2(t) -- fil(Wh (Xi+l/2, j) h(+1/2, 0)),

that:

(i) Are locally Lipschitz and consistent with the flux h,
(ii) Allow for a local resolution of qh in terms of Uh,

(iii) Reduce to an E-flux (see Osher [71]) when a(.) =_ 0, and that (iv) enforce the
L2-stability of the method.

To reflect the convection-diffusion nature of the problem under consideration,
we write our numerical flux as the sum of a convective flux and a diffusive flux:

fi(w-, w+) = fico.. (w-, w+) + lhdiff (W-, w+). (6.16)

The convective flux is given by

i .... (w, w+) = (f(u-,u+), 0)t, (6.17)

where f(u-, u+) is any locally Lipschitz E-flux consistent with the nonlinearity f,
and the diffusive flux is given by

ýdiff (W[, W) [] -U ) t - Cdiff [w], (6.18)
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where

edify = (-C12 CI2 (6.19)

c12 c12(W-, w+) is locally Lipschitz, (6.20)

C12 0 when a(.) =- 0. (6.21)

We claim that this flux satisfies the properties (i) to (iv).
Let us prove our claim. That the flux 1h is consistent with the flux h easily

follows from their definitions. That lh is locally Lipschitz follows from the fact that
f(.,.) is locally Lipschitz and from (6.19); we assume that f(-) and a(-) are locally
Lipschitz functions, of course. Property (i) is hence satisfied.

That the approximate solution qh can be resolved element by element in terms
of Uh by using (6.14) follows from the fact that, by (6.18), the flux

hq = -g(u) - C12 [U]

is independent of qh. Property (ii) is hence satisfied.
Property (iii) is also satisfied by (6.21) and by the construction of the convective

flux.
To see that the property (iv) is satisfied, let us first rewrite the flux h in the

following way:

fi(w-,w+) = (Li - 1•_I •, _g-u)t-C[w],

where

C1c2) 0 ) C 1 1u] U+, (6.22)

with 0(u) defined by 0(u) = fU f(s) ds. Since f(.,-) is an E-flux,

C1l = = f -' (f(s)-f(- u+))ds>0,

and so, by (6.19), the matrix C is semipositive definite. The property (iv) follows
from this fact and from the following result.

Proposition 26. (Stability) We have,

0 uh(x, T) dx + q•(x, t) dx dt + eT,,c([wh]) 2 0 uo (x) dx,

where eT,C ([Wh] is the following expression:

foT l<•<N{[Wh(t)]tC [Wh(t)] } ~/dr"
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For a proof, see the appendix. Thus, this shows that the flux 1h under consider-
ation does satisfy the properties (i) to (iv)- as claimed.

Now, we turn to the question of the quality of the approximate solution defined
by the LDG method. In the linear case f' =_ c and a(.) =_ a, from the above stability
result and from the the approximation properties of the finite element space Vh,
we can prove the following error estimate. We denote the L2 (0, 1)-norm of the i-th
derivative of u by I u It.

Theorem 27. (Error estimate) Let e be the approximation error w - Wh. Then
we have,

f~~ [1 I~\~ d± ( 1/2•C(x
o Ieu (xT)I2dx f • e,(xt)12dxdt+ T'C([e]) -C(xAx)kx

where C = C(k, I u Ik+1, I u Ik+2). In the purely hyperbolic case a = 0, the constant
C is of order (Ax) 1/ 2. In the purely parabolic case c = 0, the constant C is of order
Ax for even values of k for uniform grids and for C identically zero.

For a proof, see the appendix. The above error estimate gives a suboptimal
order of convergence, but it is sharp for the LDG methods. Indeed, Bassi et al [5]
report an order of convergence of order k + 1 for even values of k and of order k for
odd values of k for a steady state, purely elliptic problem for uniform grids and for
C identically zero. The numerical results for a purely parabolic problem that will
be displayed later lead to the same conclusions; see Table 5 in the section §2.b.

The error estimate is also sharp in that the optimal order of convergence of
k + 1/2 is recovered in the purely hyperbolic case, as expected. This improvement
of the order of convergence is a reflection of the semipositive definiteness of the
matrix C, which enhances the stability properties of the LDG method. Indeed, in
the purely hyperbolic case, the quantity

FoT  
- [Uh(t)]'Cll [Uh(t)] lj d/2dt,

is uniformly bounded. This additional control on the jumps of the variable Uh is
reflected in the improvement of the order of accuracy from k in the general case to
k + 1/2 in the purely hyperbolic case.

However, this can only happen in the purely hyperbolic case for the LDG meth-
ods. Indeed, since cil = 0 for c = 0, the control of the jumps of Uh is not enforced
in the purely parabolic case. As indicated by the numerical experiments of Bassi et
al. [5] and those of section §2.b below, this can result in the effective degradation of
the order of convergence. To remedy this situation, the control of the jumps of Uh
in the purely parabolic case can be easily enforced by letting cil be strictly positive
if Ic I +aI > 0. Unfortunately, this is not enough to guarantee an improvement
of the accuracy: an additional control on the jumps of qh is required! This can be
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easily achieved by allowing the matrix C to be symmetric and positive definite when
a > 0. In this case, the order of convergence of k + 1/2 can be easily obtained for
the general convection-diffusion case. However, this would force the matrix entry
c22 to be nonzero and the property (ii) of local resolvability of qh in terms of Uh

would not be satisfied anymore. As a consequence, the high parallelizability of the
LDG would be lost.

The above result shows how strongly the order of convergence of the LDG
methods depend on the choice of the matrix C. In fact, the numerical results of
section §2.b in uniform grids indicate that with yet another choice of the matrix
C, see (6.23), the LDG method converges with the optimal order of k + 1 in the
general case. The analysis of this phenomenon constitutes the subject of ongoing
work.

6.3 Numerical results in the one-dimensional case

In this section we present some numerical results for the schemes discussed in
this paper. We will only provide results for the following one dimensional, linear
convection diffusion equation

Otu+cO8u- a92u=0 in(0, T)x(0,27r),

u(t = 0, x) = sin(x), on (0, 2 7r),

where c and a > 0 are both constants; periodic boundary conditions are used. The
exact solution is u(t, x) = e-at sin(x - ct). We compute the solution up to T = 2,
and use the LDG method with C defined by

We notice that, for this choice of fluxes, the approximation to the convective term
cux is the standard upwinding, and that the approximation to the diffusion term
a 02 u is the standard three point central difference, for the P0 case. On the other
hand, if one uses a central flux corresponding to c12 = -c21 = 0, one gets a spread-
out five point central difference approximation to the diffusion term a 9x u.

The LDG methods based on pk, with k = 1, 2,3,4 are tested. Elements with
equal size are used. Time discretization is by the third-order accurate TVD Runge-
Kutta method [811, with a sufficiently small time step so that error in time is
negligible comparing with spatial errors. We list the L. errors and numerical orders
of accuracy, for Uh, as well as for its derivatives suitably scaled Ax',95 Uh for
1 < m < k, at the center of of each element. This gives the complete description of
the error for Uh over the whole domain, as Uh in each element is a polynomial of
degree k. We also list the L. errors and numerical orders of accuracy for qh at the
element center.

In all the convection-diffusion runs with a > 0, accuracy of at least (k + 1)-th
order is obtained, for both Uh and qh, when pk elements are used. See Tables 1



Discontinuous Galerkin Methods 179

to 3. The p 4 case for the purely convection equation a = 0 seems to be not in
the asymptotic regime yet with N = 40 elements (further refinement with N = 80
suffers from round-off effects due to our choice of non-orthogonal basis functions),
Table 4. However, the absolute values of the errors are comparable with the con-
vection dominated case in Table 3.

Finally, to show that the order of accuracy could really degenerate to k for pk,
as was already observed in [5], we rerun the heat equation case a = 1, c = 0 with
the central flux

=(0000)

This time we can see that the global order of accuracy in L. is only k when
pk is used with an odd value of k.
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Table 1
The heat equation a = 1, c = 0. L. errors and numerical order of accuracy,

measured at the center of each element, for Axm'O, Uh for 0 < m < k, and for qh.

k variable N= 10 N = 20 N = 40

error error order error order

u 4.55E-4 5.79E-5 2.97 7.27E-6 2.99
1 Ax Ou 9.01E-3 2.22E-3 2.02 5.56E-4 2.00

q 4.17E-5 2.48E-6 4.07 1.53E-7 4.02

u 1.43E-4 1.76E-5 3.02 2.19E-6 3.01
2 Axaxu 7.87E-4 1.03E-4 2.93 1.31E-5 2.98

(Ax) 2 cx2u 1.64E-3 2.09E-4 2.98 2.62E-5 2.99
q 1.42E-4 1.76E-5 3.01 2.19E-6 3.01

u 1.54E-5 9.66E-7 4.00 6.11E-8 3.98
Ax Oxu 3.77E-5 2.36E-6 3.99 1.47E-7 4.00

3 (Ax) 2 8 u 1.90E-4 1.17E-5 4.02 7.34E-7 3.99
(Ax) 3 

a3u 2.51E-4 1.56E-5 4.00 9.80E-7 4.00
q 1.48E-5 9.66E-7 3.93 6.11E-8 3.98

u 2.02E-7 5.51E-9 5.20 1.63E-10 5.07
Axaxu 1.65E-6 5.14E-8 5.00 1.61E-9 5.00

4 (Ax) 2 Oýu 6.34E-6 2.04E-7 4.96 6.40E-9 4.99
(Ax) 3.08u 2.92E-5 9.47E-7 4.95 2.99E-8 4.99
(Ax) 4 

04,u 3.03E-5 9.55E-7 4.98 2.99E-8 5.00
q 2.10E-7 5.51E-9 5.25 1.63E-10 5.07



Discontinuous Galerkin Methods 181

Table 2
The convection diffusion equation a = 1, c = 1. L. errors and numerical order of
accuracy, measured at the center of each element, for Axm8, Uh for 0 < m < k,
and for qh.

k variable N= 10 N = 20 N 40

error error order error order

u 6.47E-4 1.25E-4 2.37 1.59E-5 2.97
1 Ax aýu 9.61E-3 2.24E-3 2.10 5.56E-4 2.01

q 2.96E-3 1.20E-4 4.63 1.47E-5 3.02

u 1.42E-4 1.76E-5 3.02 2.18E-6 3.01
2 Ax a.u 7.93E-4 1.04E-4 2.93 1.31E-5 2.99

(Ax) 2
I 8u 1.61E-3 2.09E-4 2.94 2.62E-5 3.00
q 1.26E-4 1.63E-5 2.94 2.12E-6 2.95

u 1.53E-5 9.75E-7 3.98 6.12E-8 3.99
Ax 89u 3.84E-5 2.34E-6 4.04 1.47E-7 3.99

3 (Ax) 2 12u 1.89E-4 1.18E-5 4.00 7.36E-7 4.00
(Ax) 3 1%3u 2.52E-4 1.56E-5 4.01 9.81E-7 3.99

q 1.57E-5 9.93E-7 3.98 6.17E-8 4.01

u 2.04E-7 5.50E-9 5.22 1.64E-10 5.07
AxO ua 1.68E-6 5.19E-8 5.01 1.61E-9 5.01

4 (Ax) 2 axu 6.36E-6 2.05E-7 4.96 6.42E-8 5.00
(Ax) 3 O3•u 2.99E-5 9.57E-7 4.97 2.99E-8 5.00
(Ax) 4 a94u 2.94E-5 9.55E-7 4.95 3.OOE-8 4.99

q 1.96E-7 5.35E-9 5.19 1.61E-10 5.06
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Table 3
The convection dominated convection diffusion equation a = 0.01, c = 1. L. errors

and numerical order of accuracy, measured at the center of each element,
for Ax m Om Uh for 0 < m < k, and for qh .

k variable N = 10 N = 20 N =40

error error order error order

u 7.14E-3 9.30E-4 2.94 1.17E-4 2.98
1 Ax Ou 6.04E-2 1.58E-2 1.93 4.02E-3 1.98

q 8.68E-4 1.09E-4 3.00 1.31E-5 3.05

u 9.59E-4 1.25E-4 2.94 1.58E-5 2.99
2 Ax Oxu 5.88E-3 7.55E-4 2.96 9.47E-5 3.00

(Ax) 2 
12u 1.20E-2 1.50E-3 3.00 1.90E-4 2.98

q 8.99E-5 1.11E-5 3.01 1.10E-6 3.34

u 1.11E-4 7.07E-6 3.97 4.43E-7 4.00
Ax 8~u 2.52E-4 1.71E-5 3.88 1.07E-6 4.00

3 (Ax) 2 0 2U 1.37E-3 8.54E-5 4.00 5.33E-6 4.00
(Ax) 3 Oxu 1.75E-3 1.13E-4 3.95 7.11E-6 3.99

q 1.18E-5 7.28E-7 4.02 4.75E-8 3.94

u 1.85E-6 4.02E-8 5.53 1.19E-9 5.08
Ax O&u 1.29E-5 3.76E-7 5.10 1.16E-8 5.01

4 (Ax) 2 
x2u 5.19E-5 1.48E-6 5.13 4.65E-8 4.99

(Ax) 3 O3u 2.21E-4 6.93E-6 4.99 2.17E-7 5.00
(Ax) 4 O4u 2.25E-4 6.89E-6 5.03 2.17E-7 4.99

q 3.58E-7 3.06E-9 6.87 5.05E-11 5.92
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Table 4
The convection equation a = 0, c = 1. L. errors and numerical order of accuracy,

measured at the center of each element, for AxmOxj Uh for 0 < m < k.

k variable N = 10 N = 20 N = 40

error error order error order

1 u 7.24E-3 9.46E-4 2.94 1.20E-4 2.98
Ax Oxu 6.09E-2 1.60E-2 1.92 4.09E-3 1.97

u 9.96E-4 1.28E-4 2.96 1.61E-5 2.99
2 Ax O.u 6.00E-3 7.71E-4 2.96 9.67E-5 3.00

(Ax) 2 Ou 1.23E-2 1.54E-3 3.00 1.94E-4 2.99

u 1.26E-4 7.50E-6 4.07 4.54E-7 4.05
3 Ax axu 1.63E-4 2.OOE-5 3.03 1.07E-6 4.21

(Ax) 2 
a:u 1.52E-3 9.03E-5 4.07 5.45E-6 4.05

(Ax) 3 a'u 1.35E-3 1.24E-4 3.45 7.19E-6 4.10

u 3.55E-6 8.59E-8 5.37 3.28E-10 8.03
Ax a~u 1.89E-5 1.27E-7 7.22 1.54E-8 3.05

4 (Ax) 2 a2u 8.49E-5 2.28E-6 5.22 2.33E-8 6.61
(Ax) 3 O:u 2.36E-4 5.77E-6 5.36 2.34E-7 4.62
(Ax) 4 axu 2.80E-4 8.93E-6 4.97 1.70E-7 5.72
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Table 5
The heat equation a = 1, c 0. Lo, errors and numerical order of accuracy,

measured at the center of each element, for Ax'm8• uh for 0 < m < k,

and for qh, using the central flux.

k variable N= 10 N = 20 N = 40

error error order error order

u 3.59E-3 8.92E-4 2.01 2.25E-4 1.98
1 Ax Iu 2.10E-2 1.06E-2 0.98 5.31E-3 1.00

q 2.39E-3 6.19E-4 1.95 1.56E-4 1.99

u 6.91E-5 4.12E-6 4.07 2.57E-7 4.00
2 Ax Ou 7.66E-4 1.03E-4 2.90 1.30E-5 2.98

(Ax) 2 82u 2.98E-4 1.68E-5 4.15 1.03E-6 4.02
q 6.52E-5 4.11E-6 3.99 2.57E-7 4.00

u 1.62E-5 1.01E-6 4.00 6.41E-8 3.98
Ax aXu 1.06E-4 1.32E-5 3.01 1.64E-6 3.00

3 (Ax) 2 c9xu 1.99E-4 1.22E-5 4.03 7.70E-7 3.99
(Ax) 3 O•u 6.81E-4 8.68E-5 2.97 1.09E-5 2.99

q 1.54E-5 1.01E-6 3.93 6.41E-8 3.98

u 8.25E-8 1.31E-9 5.97 2.11E-11 5.96
Ax 19u 1.62E-6 5.12E-8 4.98 1.60E-9 5.00

4 (Ax) 2, Ou 1.61E-6 2.41E-8 6.06 3.78E-10 6.00
(Ax) 3 

axu 2.90E-5 9.46E-7 4.94 2.99E-8 4.99
(Ax) 4 19u 5.23E-6 7.59E-8 6.11 1.18E-9 6.01

q 7.85E-8 1.31E-9 5.90 2.11E-11 5.96
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6.4 The LDG methods for the multidimensional case

In this section, we consider the LDG methods for the following convection-
diffusion model problem

atU+ 1 Oa,(f (u)- E aij(u) 0,,u)=0 inQ, (6.24)
1< i< d l _j _d

u(t = 0) = uo on (0, 1)d, (6.25)

where Q = (0, T) x (0, 1)d, with periodic boundary conditions. Essentially, the
one-dimensional case and the multidimensional case can be studied in exactly
the same way. However, there are two important differences that deserve
explicit discussion. The first is the treatment of the matrix of entries aij (u),
which is assumed to be symmetric, semipositive definite and the introduction
of the variables qj, and the second is the treatment of arbitrary meshes.

To define the LDG method, we first notice that, since the matrix aij (u) is
assumed to be symmetric and semipositive definite, there exists a symmetric
matrix bij (u) such that

aij(u) = El<f<d bit(u) btj(u). (6.26)

Then we define the new scalar variables q= 1<_j _d bjj (u) Oa; u and rewrite
the problem (6.24), (6.25) as follows:

1t u + E a,(fi(u) - E bit(u) qe) = 0 in Q, (6.27)
1<i<d 1<1<d

qt- > Oa.gjj(u)=O -=l,...d, inQ, (6.28)
1_<j<d

u(t = 0) = uo on ( 0 , 1 )d, (6.29)

where gej (u) = fu bj(s) ds. The LDG method is now obtained by discretiz-
ing the above equations by the Discontinuous Galerkin method.

We follow what was done in §2. So, we set w = (u, q)t = (u, q,, qd) t

and, for each i = 1, ... , d, introduce the flux

hi(w) = (Af(u) - El<t<d blt(u) qj, -gii(u),... ,-gdi(U) )t. (6.30)

We consider triangulations of (0, 1)d, TAý = { K }, made of non-overlapping

polyhedra. We require that for any two elements K and K', K n K' is either
a face e of both K and K' with nonzero (d - 1)-Lebesgue measure I e 1, or has
Hausdorff dimension less than d - 1. We denote by E, the set of all faces e
of the border of K for all K E TA,,. The diameter of K is denoted by AXK

and the maximum AXK, for K E TAx is denoted by Ax. We require, for the
sake of simplicity, that the triangulations T7Ax be regular, that is, there is a
constant independent of Ax such that

AXK ,
-K a VK ET,,PK
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where PK denotes the diameter of the maximum ball included in K.
We seek an approximation Wh = (Uh, qh)t = (Uh, qhl,'" , qhd)t to w such

that for each time t E [0, T], each of the components of wh belong to the finite
element space

Vh =Vh {v E Ll((0, 1)d): vIK E Pk(K) VK E Tz6,},. (6.31)

where pk (K) denotes the space of polynomials of total degree at most k. In
order to determine the approximate solution Wh, we proceed exactly as in
the one-dimensional case. This time, however, the integrals are made on each
element K of the triangulation TA, . We obtain the following weak formulation
on each element K of the triangulation Td.:

V Vh,u E pk(K) :

'K 9tUh(X, t) Vh,,(x) dx - ]hi.(Wh(X, t))'9.jVh,u(x) dx

+ f h(Wh,nOK)(X, t) Vh,u(x) dF(x) = 0, (6.32)

for= 1,... ,d:
V Vh,U E Pk(K) :

fK qht(X't)Vhq,(x)dx-- K hjq,(Wh(X,t))OxjVh,q,(X)dX
'K qxtvhq(dx-1•j:5d K

+ f hq, (wh, naK) (x, t) Vh,q, (x) d F(x) = 0, (6.33)

V Vh,, E pk(K)

fK Uh(X,0)Vh,i(x)dX= fK uO(X) Vh,i(x) dx, (6.34)

where naK denotes the outward unit normal to the element K at x E OK. It
remains to choose the numerical flux (hu, hql,"" , hqý,)t = - lh(wh, n8K)(X, t).

As in the one-dimensional case, we require that the fluxes 1h be of the
form

h(wh, faK))(X) - f(wh(xn , t), wh(xeX'K, t); fK),

where Wh (XintK) is the limit at x taken from the interior of K and Wh (XeXtK)

the limit at x from the exterior of K, and consider fluxes that:

(i) Are locally Lipschitz, conservative, that is,

h(wh (xintK ), wh (XetK); naK$)(Wh (Xew K ), Wh (X n'K); -naK) = 0,

and consistent with the flux

E hinaK,i,
1<i<d
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(ii) Allow for a local resolution of each component of qh in terms of Uh only,
(iii) Reduce to an E-flux when a(.) = 0,
(iv) Enforce the L2-stability of the method.

Again, we write our numerical flux as the sum of a convective flux and a
diffusive flux:

h = ýconv + fidiff,

where the convective flux is given by

hconv(W-, w+; n) = (!(u-, u+; n), 0)t,

where f(u-, u+; n) is any locally Lipschitz E-flux which is conservative and
consistent with the nonlinearity

E fi(u) ni,

and the diffusive flux hdiff (w-, w+; n) is given by

(- d [u] ni, - E gil(u)n,. - S gid(U) ni )--diffW],
l<_i,<_d [U Ii~d l<i<d

where

(0 C12 C13 . Cld\

C2 0 0... 0
Cdiff = -C13 0 0.. 0

-Cl 0 0 J
clj Clj(W-, w+) is locally Lipschitz for j = 1,... d,
cl =0 when a(.)=0 forj= 1,... ,d.

We claim that this flux satisfies the properties (i) to (iv).
To prove that properties (i) to (iii) are satisfied is now a simple exercise.

To see that the property (iv) is satisfied, we first rewrite the flux h in the
following way:

[g_(u) ,] qni,- E gil(u)ni,",-- gid(U)ni )-C[w],

l<~~ U <i<_d l<i<d

where

(C11 C12 C13 C..

C ----/ -Cl3 0 0 . . 0

\-Cld 0 0...

c =1 1 ( l<i<ad O] ( n- f(u,u+;
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where ¢i (u) fu fl (s) ds. Since f(., .;n) is an E-flux,

1 +

= [ _] ( 1 i (s) ni-f(uu+;n))ds

> 0,

and so the matrix C is semipositive definite. The property (iv) follows from

this fact and from the following result.

Proposition 28. (Stability) We have,

f Uh(x, T)dx + fqh(x,t) 12 dx dt+ eT,c([wh])

2 (,1 )d J0  0 ,i)d

- u2(x) dx,

- 2 J(O,1)d

where the quantity 19T,C([Wh]) is given by

fot S J[Wh(X,t)]'C[Wh(X,t)]dF(x)dt.L eEa

We can also prove the following error estimate. We denote the integral over

(0, 1)d of the sum of the squares of all the derivatives of order (k + 1) of u by

UI1k+1.

Theorem 29. (Error estimate) Let e be the approximation error w - Wh.

Then we have, for arbitrary, regular grids,

ei e(x,T) 12 dx + I eq(x,t) 12 dxdt + OT,C([e])}

_< C ('AX)k,

where C = C(k, Iu [k+1, Iu k+2). In the purely hyperbolic case aij= 0, the
constant C is of order (Ax)1/

2 . In the purely parabolic case c = 0, the constant

C is of order Ax for even values of k and of order 1 otherwise for Cartesian
products of uniform grids and for C identically zero provided that the local

spaces Qk are used instead of the spaces pk, where Qk is the space of tensor

products of one dimensional polynomials of degree k.

6.5 Extension to multidimensional systems

In this chapter, we have considered the so-called LDG methods for convection-
diffusion problems. For scalar problems in multidimensions, we have shown
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that they are L2-stable and that in the linear case, they are of order k if
polynomials of order k are used. We have also shown that this estimate is
sharp and have displayed the strong dependence of the order of convergence
of the LDG methods on the choice of the numerical fluxes.

The main advantage of these methods is their extremely high paralleliz-
ability and their high-order accuracy which render them suitable for computa-
tions of convection-dominated flows. Indeed, although the LDG method have
a large amount of degrees of freedom per element, and hence more compu-
tations per element are necessary, its extremely local domain of dependency
allows a very efficient parallelization that by far compensates for the extra
amount of local computations.

The LDG methods for multidimensional systems, like for example the
compressible Navier-Stokes equations and the equations of the hydrodynamic
model for semiconductor device simulation, can be easily defined by simply
applying the procedure described for the multidimensional scalar case to each
component of u. In practice, especially for viscous terms which are not sym-
metric but still semipositive definite, such as for the compressible Navier-
Stokes equations, we can use q =(O 1 u, ... , 

0
Zd u) as the auxiliary variables.

Although with this choice, the L2-stability result will not be available theo-
retically, this would not cause any problem in practical implementations.

6.6 Some numerical results

Next, we present some numerical results from the papers by Bassi and Rebay
[3] and Lomtev and Karniadakis [63].

* Smooth, steady state solutions. We start by displaying the conver-
gence of the method for a p-refinement done by Lomtev and Karniadakis [63].
In Figure 6.1, we can see how the maximum errors in density, momentum,
and energy decrease exponentially to zero as the degree k of the approximat-
ing polynomials increases while the grid is kept fixed; details about the exact
solution can be found in [63].

Now, let us consider the laminar, transonic flow around the NACA0012
airfoil at an angle of attack of ten degrees, free stream Mach number M =
0.8, and Reynolds number (based on the free stream velocity and the airfoil
chord) equal to 73; the wall temperature is set equal to the free stream
total temperature. Bassy and Rebay [3] have computed the solution of this
problem with polynomials of degree 1, 2, and 3 and Lomtev and Karniadakis
[63] have tried the same test problem with polynomials of degree 2,4, and 6
in a mesh of 592 elements which is about four times less elements than the
mesh used by Bassi and Rebay [3]. In Figure 6.3, taken from [63], we display
the pressure and drag coefficient distributions computed by Bassi and Rebay
[3] with polynomials on degree 3 and the ones computed by Lomtev and
Karniadakis [63] computed with polynomials of degree 6. We can see good
agreement of both computations. In Figure 6.2, taken from [63], we see the
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mesh and the Mach isolines obtained with polynomials of degree two and
four; note the improvement of the solution.

Next, we show a result from the paper by Bassi and Rebay [3]. We con-
sider the laminar, subsonic flow around the NACA0012 airfoil at an angle
of attack of zero degrees, free stream Mach number M = 0.5, and Reynolds
number equal to 5000. In figure 6.4, we can see the Mach isolines correspond-
ing to linear, quadratic, and cubic elements. In the figures 6.5, 6.6, and 6.7
details of the results with cubic elements are shown. Note how the boundary
layer is captured within a few layers of elements and how its separation at
the trailing edge of the airfoil has been clearly resolved. Bassi and Rebay [3]
report that these results are comparable to common structured and unstruc-
tured finite volume methods on much finer grids- a result consistent with the
computational results we have displayed in these notes.

Finally, we present a not-yet-published result kindly provided by Lomtev
and Karniadakis about the simulation of an expansion pipe flow. The smaller
cylinder has a diameter of 1 and the larger cylinder has a diameter of 2. In
Figure 6.8, we display the velocity profile and some streamlines for a Reynolds
number equal to 50 and Mach number 0.2. The computation was made with
polynomials of degree 5 and a mesh of 600 tetrahedra; of course the tetrahe-
dra have curved faces to accommodate the exact boundaries. In Figure 6.9,
we display a comparison between computational and experimental results. As
a function of the Reynolds number, two quantities are plotted. The first is the
distance between the step and the center of the vertex (lower branch) and the
second is the distance from the step to the separation point (upper branch).
The computational results are obtained by the method under consideration
with polynomials of degree 5 for the compressible Navier Stokes equations,
and by a standard Galerkin formulation in terms of velocity-pressure (NEK-
TAR), by Sherwin and Karniadakis [79], or in terms of velocity-vorticity
(IVVA), by Trujillo [87], for the incompressible Navier Stokes equations; re-
sults produced by the code called PRISM are also included, see Newmann
[69]. The experimental data was taken from Macagno and Hung [67]. The
agreement between computations and experiments is remarkable.

e Unsteady solutions. To end this chapter, we present the computation
of an unsteady solution by Lomtev and Karniadakis [63]. The test problem
is the classical problem of a flow around a cylinder in two space dimensions.
The Reynolds number is 10,000 and the Mach number 0.2.

In Figure 6.10, the streamlines are shown for a computation made on a
grid of 680 triangles (with curved sides fitting the cylinder) and polynomials
whose degree could vary from element to element; the maximum degree was
5. In Figure 6.11, details of the mesh and the density around the cylinder are
shown. Note how the method is able to capture the shear layer instability
observed experimentally. For more details, see [63].
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Fig. 6.1. Maximum errors of the density (triangles), momemtum (circles) and en-
ergy (squares) as a function of the degree of the approximating polynomial plus
one (called "number of modes" in the picture).
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Fig. 6.2. Mesh (top) and Mach isolines around the NACA0012 airfoil, (Re =
73, M = 0.8, angle of attack of ten degrees) for quadratic (middle) and quartic
(bottom) elements.
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Fig. 6.3. Pressure (top) and drag(bottom) coefficient distributions. The squares

were obtained by Bassi and Rebay [3] with cubics and the crosses by Lomtev and

Karniadakis [63] with polynomials of degree 6.
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/' /

Fig. 6.4. Mach isolines around the NACA0012 airfoil, (Re = 5000, M = 0.5, zero
angle of attack) for the linear (top), quadratic (middle), and cubic (bottom) ele-
ments.
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Fig. 6.5. Pressure isolines around the NACA0012 airfoil, (Re = 5000, M = 0.5,
zero angle of attack) for the for cubic elements without (top) and with (bottom)
the corresponding grid.
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Fig. 6.6. Math isolines around the leading edge of the NACA0012 airfoil, (Re =

5000, M = 0.5, zero angle of attack) for the for cubic elements without (top) and
with (bottom) the corresponding grid.
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Fig. 6.7. Mach isolines around the trailing edge of the NACA0012 airfoil, (Re =
5000, M = 0.5, zero angle of attack) for the for cubic elements without (top) and
with (bottom) the corresponding grid.
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Y

Fig. 6.8. Expansion pipe flow at Reynolds number 50 and Mach number 0.2. Veloc-
ity profile and streamlines computed with a mesh of 600 elements and polynomials
of degree 5.
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Fig. 6.9. Expansion pipe flow: Comparison between computational and experimen-
tal results.
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Fig. 6.10. Flow around a cylinder with Reynolds number 10,000 and Mach number
0.2. Streamlines. A mesh of 680 elements was used with polynomials that could
change degree from element to element; the maximum degree was 5.
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Fig. 6.11. Flow around a cylinder with Reynolds number 10, 000 and Mach number
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6.7 Appendix: Proof of the L2 -error estimates

Proof of Proposition 26 In this section, we prove the the nonlinear
stability result of Proposition 26. To do that, we first show how to obtain
the corresponding stability result for the exact solution and then mimic the
argument to obtain Proposition 26.

The continuous case as a model. We start by rewriting the equations
(6.10) and (6.11), in compact form. If in equations (6.10) and (6.11) we re-
place vu (x) and Vq (x) by v, (x, t) and Vq (X, t), respectively, add the resulting
equations, sum on j from 1 to N, and integrate in time from 0 to T, we
obtain that

B(w,v) = 0, V smooth v, (6.35)

where

B (w, v) = tu (x, t) vu(x, t) dxdt (6.36)

+ q(x, t) vq (x, t) dx dt

- jj h(w(x, t))t '9 v(x, t) dx dt.

Note that if we use the fact that

h(w(x, t))t cOxw(x, t) = a,•( ¢(u) - g(u) q)

is a complete derivative, we see that

B(ww) u2 (x, T) dx + q2 (x,t) dx dt

01 U2 (X) dx, (6.37)2

and that B(w, w) = 0, by (6.35). As a consequence, we immediately obtain
the following L2-stability result:

j u2 (x, T) dx + q2(x,t) dx dt = ½fJ u(x) dx.

This is the argument we have to mimic in order to prove Proposition 26.
The discrete case. Thus, we start by finding a compact form of equations

(6.13) and (6.14). If we replace Vh,u(x) and Vh,q(X) by Vh,u(X, t) and Vh,q(X, t)

in the equations (6.13) and (6.14), add them up, sum on j from 1 to N and
integrate in time from 0 to T, we obtain

Bh(Wh, Vh) = 0, (6.38)
Vvh(t) EVhkxVhk, VtE(0, T).
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where T 71
Bh(Wh,Vh) = 1  OtUh(X,t) vh,u(x,t)dxdt

+ •T•1 qh(x,t)Vh,q(X,t)dxdt

-f h(Wh)+/ 1 1 2 (t)[ Vh (t) ]j+1/2 dt

1< 3 (N

- jT E h(Wh (X, t)) t 1% Vh (X, t) dx dt.

1•j•N NI

Next, we obtain an expression for Bh (Wh, Wh). It is contained in the following
result.

Lemma 30. We have

Bh (Wh, Wh) = U(x, T) dx

+ jTj1 q2(X, t) dx dt + eT,C([Wh])

"f_12 fo (X,O) dX,

where OT,C([Wh]) is defined in Proposition 26.

Next, since Bh(Wh,Wh) = 0, by (6.38), we get the equality

-f U~h(x,T)dx + qh(x,t)dxdt + OT,C([Wh]) = Uh(X,O)dx

from which Proposition 26 easily follows since
jo 2 u (X,0) dx _< ½ 01 U2 (x) dx,

by (6.12). It remains to prove Lemma 30.
Proof of Lemma (30). After setting Vh = Wh in (6.39), we get

B(Wh,Wh) = Uf Uh(x,T) dx + q2(x,t)dxdt

+±foT &di 8 8(t) dt- l Uh(X,O)dx,

where Odiss (t) is given by

E ~ 3hw)+112 (t) [Wh (t) ]j+1/2 + / f hxt) iW(, )d
1•3 •N
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It only remains to show that

fT Odiss(t) dt = eT,C([Wh]).

To do that, we proceed as follows. Since

h(Wh(X,t)) t O Wh(Xt)b= (f(Uh) - a(uh)qh)OxUh - g(Uh) 9x qh

.f (s) ds -g(Uh) qh)

- 89 (O(Uh) - g(uh) qh)

- ax H(Wh(X,t)),

we get

&diss(t) = • { [H(wh(t)) ]J+1/2 - fi(Wh) 1+l/ 2 (t) [Wh(t) ]j+1/2}

1<j<N l/

1<j<N {[(wh (t))] -f(Wh)
t (t) [ Wh (t) 1l+/

Since, by the definition of H,

[H(wh(t))] = [ O(Uh(t))] - [g(uh(t)) qh(t) ]

- [5(Uhh(t))] - [g(uh(t))]Iqh(t) - [qh(t)]g(uh(t)),

and since (hu, hq)t - , we get

Odiss (t)

= 1<j< {[O~(Uh(t))] -[g(uh(t))]'qh(t) -[uh(t) hu}I<j:5N lj+1/2

+ E {- [qh(t)1g(uh)(t) - [qh(t)]hq
I<_j:N ) j+1/21

This is the crucial step to obtain the L2 -stability of the LDG methods, since
the above expression gives us key information about the form that the flux
fi should have in order to make Odiss(t) a nonnegative quantity and hence
enforce the L2-stability of the LDG methods. Thus, by taking hi as in (6.16),
we get

Odiss(t) = Z1•j•N [Wh(t)]tC [Wh(t)] }j+1/2'

and the result follows. This completes the proof.
This completes the proof of Proposition 26.
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Proof of Theorem 27 In this section, we prove the error estimate of The-
orem 27 which holds for the linear case f'(.) =_ c and a(-) _ a. To do that,
we first show how to estimate the error between the solutions wv = (uv, qv)t,
v = 1,2, of

Ot uv +,O9 (f(uv) - V/a(u•) q,) = 0 in (0, T) x (0, 1),
qv - ,9g(u) = 0 in (0,T) x(0, 1),

uv(t = 0) = uo,v, on (0,1).

Then, we mimic the argument in order to prove Theorem 27.
The continuous case as a model. By the definition of the form B(-, .),

(6.36), we have, for v = 1, 2,

B(w•,v) =0, Vsmooth v(t), VtE (0,T).

Since in this case, the form B(-, .) is bilinear, from the above equation we
obtain the so-called error equation:

B(e,v) = 0, V smooth v(t), Vt E (0,T),

where e = w, - w 2 . Now, from (6.37), we get that

B(e,e) = j e2(x,T)dx + eq(x,t)dxdt- 2 ' d

and since eu(x,O) = UO,1(X) -uo, 2 (x) and B(e,e) = 0, by the error equation,
we immediately obtain the error estimate we sought:

I e2 (xT)dx+ 2 , (6.40)1 = ( 0q()-u02() x

To prove Theorem 27, we only need to obtain a discrete version of this argu-
ment.

The discrete case. Since,

Bh(Wh,Vh) = 0, Vvh(t) E Vh X Yh, Vt E (0,T),

Bh(W, Vh)= 0, Vvh(t) EVhXVh, Vt E (0,T),

by (6.38) and by equations (6.10) and (6.11), respectively, we immediately
obtain our error equation:

Bh(e, vh) = 0, Vvh(t) E Vh x Vh, Vt E (0,T),

where e = w - Wh. Now, according to the continuous case argument, we
should consider next the quantity Bh (e, e); however, since e is not in the finite
element space, it is more convenient to consider Bh (Ph (e), Ph (e)), where

Ph(e(t)) = ( Ph(eu(t)), Ph(eq(t)) )
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is the so-called L2-projection of e(t) into the finite element space hx h
The L2 -projection of the function p into Vh, Ph(p), is defined as the only
element of the finite element space Vh such that

vVh EVh j (Ph(p)(x)-p(x)) vh( )x =0. (6.41)

Note that, in fact uh(t = 0) = Ph(uo), by (6.15).
Thus, by Lemma 30, we have

Bh(Ph(e),Ph(e)) Ph(e (T))(x)1dx

"+ [T 1 Ph(eq(t))(x) 12 dx dt

"± eT,c([Ph(e)])

1 j Ph(e.(0))(x) 12 dx,

and since

Ph(e.(O)) = Ph(UO - uh(O)) = Ph(UO) - Uh(O) = 0,

by (6.15) and (6.41), and

Bh(Ph(e), Ph(e)) = Bh(Ph(e) - e, Ph(e)) = Bh(Ph(w) - W, Ph W),

by the error equation, we get

1 f ]Ph(eU(T))(x) 12 dx + IPh(eq(t))(x) 12 dx dt + OT,C([Ph(e)])

= Bh(Ph(W) - w, Ph(e)). (6.42)

Note that since in our continuous model, the right-hand side is zero, we expect
the term B(Ph(W) - w, Ph(e)) to be small.

Estimating the right-hand side. To show that this is so, we must
suitably treat the term B(Ph(w) - w, Ph(e)).

Lemma 31. For p = Ph(w) - w, we have

1 fTf1 1 Xd
Bh(p, Ph(e)) =- T,C (P) + - Jo Ph (eq(t))(x) 2 dxdt

+ (Ax)2k j Ci (t)dt

T {f0 1  }1/2+ (AX)k I C2 (t) I[Ph (e.(t)) (x) 12 dx I dt,
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where

C1 (t) = 2C k c 1 c + c11)2 Ax +4 1 C212dk kut1+1

+4 a d~ (Ax) 2 (4-k) I u(t) +

C2(t) = V8Ck dk {I VaIlC12 Iu(t) Ik+2

+a (Ax)(k"k) I u(t) 1+2

where the constants Ck and dk depend solely on k, and k = k except when the
grids are uniform and k is even, in which case k = k + 1.

Note how cl1 appears in the denominator of C1 (t). However, C1 (t) remains
bounded as cll goes to zero since the convective numerical flux is an E-flux.

To prove this result, we will need the following auxiliary lemmas. We
denote by I U IH(k+l)(j) the integral over J of the square of the (k + 1)-the
derivative of u.

Lemma 32. For p = Ph(w) - w, we have

I Iujt1/2 1 • Ck ( Ax )k+1/21 UIH(k+l)(jj+/2),

I [Pu Ij+1/2 1 •_ Ck ( Ax )k+1/2 I U 6H(+1)(jj+112),

I P1qj+l 2 I !5 Ck \ra (Ax )k+1/2 U U JH(k+.)(jj+'1ý),

I [Pq ]j+l/2 1 • Ck V/r ( AX )k+1/2 I U IH(k+2)(j+1/2),

where Jj+1 / 2 = Ij U Ij+l, the constant Ck depends solely on k, and k = k

except when the grids are uniform and k is even, in which case k = k + 1.

Proof. The two last inequalities follow from the first two and from the
fact that q = F caxu. The two first inequalities with k = k follow from the
definitions of yu and [Pu ] and from the following estimate:

I Ph(u)(xj+1 / 2) - uj+l/2 I <- ck (Ax )k+U/I IH(+)(J+),

where the constant ck depends solely on k. This inequality follows from the
fact that

Ph(U)(Xj+1 / 2 ) - Uj+1/2 = 0

when u is a polynomial of degree k and from a simple application of the
Bramble-Hilbert lemma.
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To prove the inequalities in the case in which k + k + 1, we only need to
show that if u is a polynomial of degree k + 1 for k even, then P = 0. It is
clear that it is enough to show this equality for the particular choice

u(x) = ((x - Xj+1i )l(Axl2))k+l.

To prove this, we recall that if PF denotes the Legendre polynomials of order
t:

(i) f- Fe(s) Pm.(s) ds = 251m,

(ii) Pe(+1) = (±1)', and
(iii) PF(s) is a linear combination of odd (even) powers of s for odd (even)

values of f.

Since we are assuming that the grid is uniform, Axj = Axj+l = Ax, we can

write, by (i), that

oZ-~ 2 P, (s) u(xj + .Ax s) ds IP, (Ax12 )

0<1<k

for x E Ij. Hence, for our particular choice of u, we have that the value of

P-uj+1/2 is given by

1 2f + 1 1f )klplj12 E 2 _ PF(s) {(s 1)k+lPe(1)+(s + 1)k+l Pj(-1)} ds

0<1<k

2E1 2F+ 1 (k+1) 72" _ P(s) si {(-1)k+ 'Pj(1) + PF(-1)}ds
2 E 2 j I-io<ti<k

2f2+1 (k1+) 1 PF(s) si {(-1)k+l-i +(-1)1 ds,
O<_,i<k

by (ii). When the factor {(-1)k+'-i + (-1)I} is different from zero, I k + 1 -
i + f I is even and since k is also even, Ii - f I is odd. In this case, by (iii),

f 1 P,F(s) s' ds = O,

and so PUj+1/2 = 0. This completes the proof.

We will also need the following result that follows from a simple scaling
argument.

Lemma 33. We have

I [Ph(P)]j+1/2 I < dk (Ax)- 1 /2 1 Ph(P) IL2(Jj+1/2),

where Jj+l/2 = Ij U Ij+l and the constant dk depends solely on k.
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We are now ready to prove Lemma 31.
Proof of Lemma 31. To simplify the notation, let us set Vh = Phe. By

the definition of Bh(', "), we have

T 1
Bh(P, Vh) I O9tP.(X, t) Vh, (X,t)dx dt

± foT1 Pq(X,t)Vh,q(X,t)dxdt0 f ^
- IT EZ_ h(p)J+1 /2(t) [Vh(t) ]j+1/2 dt

-f N h(p(x, t))t Ox Vh (X, t) dx dt

= - fi(P)f÷ 12 (t) [Vh(t) ]i+1/2 dt,

by the definition of the L2 --projection (6.41).
Now, recalling that p = (Pu,Pq)t and that Vh = (Vu, Vq) t , we have

hi(p) t [vh(t)] = (cP.-C 11 [P.])[v.]

+(-ra-q-C12 [Pq])[vq]
+(--,aP + C12 [P. ][Vq]

= 01 + 02 + 03.

By Lemmas 32 and 33, and writing J instead Jj+l/ 2 , we get

101 1 • ck (Ax)k+1/ 2 IUIH-+1(J) (ICl + c11 ) I [vu] I,

102 _I Ck dk (AzX)k (a I u IHl+2(j) (AX)kýk

+'/aI C12 I I UIJJ_+2(J))) II VU 1IL2(J),

103 I • Ck dk (Ax)k (V-•I u IHk+I(j) (X)k-k

+1 C12 II U IHk+l(J)) ) I1 Vq IIL2(J).

This is the crucial step for obtaining our error estimates. Note that the treat-
ment of 01 is very different than the treatment of 02 and 03. The reason for
this difference is that the upper bound for 01 can be controlled by the form
OT,C([Vh])- we recall that Vh = Ph(e). This is not the case for the upper
bound for 02 because &T,C[Vh] 0 if c = 0 nor it is the case for the upper
bound for 03 because OT,C [Vh] does not involve the jumps [vq]!
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Thus, after a suitable application of Young's inequality and simple alge-
braic manipulations, we get

fi(p)t [Vh(t)] <1 cil [v]2 + 1IVq L2(j)
1

"+' C 1,j(t) (AýX)
2

k + C2,J(t) (GAx)I II vI L2 (J),

where

C1,j(t) = C2 ( ( + 1 Ax + 4+ c12 12 d ) I u(t) H1+2(j)

+ 4a c2 d 2 (,Ax)2 (ý-k) I u(t) 12]H +(

and

C2 , (t) = Ck dk { Vý I C12 u(t) IH-+2(J) + a (,Ax)(k-k) I u(t) IH4+2(J)

Since

Bh(p, Vh) < LT-I<j<•N I l(p). 1 / 2 (t) [Vh(t) ]j+1/2 Adt,

and since Jj+1/ 2 = Ij U Ij+l, the result follows after simple applications of
the Cauchy-Schwartz inequality. This completes the proof.

Conclusion. Combining the equation (6.42) with the estimate of Lemma
31, we easily obtain, after a simple application of Gronwall's lemma,

{ T iPh(e1(1))(x)I dx+f1fo IPh(eq(t))() 12 dxdt + eT,c([Ph(e)]) 1/2

•(,AX)k{I ýfo C,(t) dt +fLC 2 (t) dt}

Theorem 27 follows easily from this inequality, Lemma 33, and from the
following simple approximation result:

1I P- Ph(P) IIL2(0,1) _ Ak (AX)kA- IP IH(h+1)(0,1)

where 9k depends solely on k.
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7 The LDG method for other nonlinear parabolic
problems: Propagating surfaces

7.1 Introduction

In this chapter, we briefly show how to extend the LDG method to nonlinear
second-order parabolic equations. We consider the following model problem:

Wot +F(Dýo,D2 2,) =0, in ( 0 , 1 )d x (0,T),

W (x, 0) = o(X), V (x) E (0, 1)d,

where we take periodic boundary conditions and assume that F is nonincreas-
ing in the second variable. For the definition and properties of the viscosity
solution of this and more general problems of this type, see the work by
Crandall, Ishii, and Lions [29].

For simplicity, we only consider the two-dimensional case, d = 2:

pt + F(Vx, py, (pxx, Wxy, Wyy) = 0, in (0, 1)2 X (0, T), (7.1)

s(x, 0) = Wo(x), V (x) G (0,1)2, (7.2)

with periodic boundary conditions. The material presented in this section is
based in the work of Hu and Shu [43].

7.2 The method

To idea to extend the LDG method to this case, is to rewrite the problem
(7.1), (7.2) for W as follows:

ot = -F(u,vp,q,r), in (0,1) x (0,T), (7.3)

V(X, 0) = Po(x), V x E (0, 1). (7.4)

where (u, v, p, qp, r) solves the following problem:

ut+F(u,v,p,q,r)x =0, in (0,1)2 x (0, T), (7.5)

vt + H(u, v, p, q, r)y = 0, in (0,1)2 x (0, T), (7.6)

p - ux = 0, in (0,1)2 x (0, T), (7.7)

q-Uy = 0, in (0,1)2 x (0, T), (7.8)
r - v': = 0, in (0, 1)2 x (0, T), (7.9)

u(x,y,0) = (WO).(xY), V (x,y) E (0,1)2, (7.10)

V(XY,0) = (so0)y(x,y), V (x,y) E (0,1)2. (7.11)

Again, a straightforward application of the LDG method to the above prob-
lem produces an approximation (Uh,Vh,Ph,qh,rh) to (u,v,p,qp,r). We can
take each of the approximate solutions to be piecewise a polynomial of degree
k - 1. Then, we define the approximation Voh to 0 by solving the problem
(7.3), (7.4) in the manner described in the chapter on RKDG methods for
multidimensional Hamilton-Jacobi equations.
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7.3 Computational results

We present a couple of numerical results that display the good performance
of the method. Our main purpose is to show that the method works well if
both quadrangles and triangles are used.

First test problem. We consider the problem of a propagating surface:

{t-(1-WeK) 1 + 2 = 0, 0 < x < 1,0<y<1 (7.12)

W(x, y, 0) = 1 - ¼(cos(27rx - 1)) (cos(27ry - 1))

where K is the mean curvature defined by
K = -,pXX (1 + W -

2) Pxy + WYY(1 + W2)

W1+$2 +•2)•
X(7.13)

and - is a small constant. Periodic boundary condition is used.
This problem was studied in [72] by using the finite difference ENO

schemes.
We first use a uniform rectangular mesh of 50 x 50 elements and the local

Lax-Friedrichs flux. The results of 6 = 0 (pure convection) and 6 = 0.1 are
presented in Fig. 7.1 and Fig. 7.2, respectively. Notice that the surface at
T = 0 is shifted downward by 0.35 in order to show the detail of the solution
at T = 0.3.

Next we use a triangulation shown in Fig. 7.3. We refine the mesh around
the center of domain where the solution develops discontinuous derivatives
(for the e = 0 case). There are 2146 triangles and 1128 nodes in this triangu-
lation. The solutions are displayed in Fig. 7.4 and Fig. 7.5, respectively, for
E = 0 (pure convection) and e = 0.1. Notice that we again shift the solution
at T = 0.0 downward by 0.35 to show the detail of the solutions at later time.

Second test problem. The problem of a propagating surface on a unit
disk. The equation is the same as (7.12) in the previous example, but it is
solved on a unit disk x2 + y2 < 1 with an initial condition

ýO(x'yO) = sin -7r(x2 +2Y )

and a Neumann type boundary condition VW = 0.
It is difficult to use rectangular meshes for this problem. Instead we use

the triangulation shown in Fig. 7.6. Notice that we have again refined the
mesh near the center of the domain where the solution develops discontinuous
derivatives. There are 1792 triangles and 922 nodes in this triangulation. The
solutions with e = 0 are displayed in Fig. 7.7. Notice that the solution at t = 0
is shifted downward by 0.2 to show the detail of the solution at later time.

The solution with E = 0.1 are displayed in Fig. 7.8. Notice that the so-
lution at t = 0 is again shifted downward by 0.2 to show the detail of the
solution at later time.
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p2, 50x50 elements p3, 50x50 elements

Vt y

t0.3 t =0.3

"• • J~t =0.0 •• Jt = 0.0

1 -0.35 

- 0.35

Fig. 7.1. Propagating surfaces, rectangular mesh, e = 0.

7.4 Concluding remarks

We have shown, briefly, how to extend the LDG method originally devised
for nonlinear convection-diffusion equations to second-order parabolic equa-
tions that have a viscosity solution. We have shown that the method works
well without slope limiting and that it works well in both quadrangles and
triangles.
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p2, 50x50 elements p3, 50x50 elements

F 7.•• 2 op ting.6 sfertga s,=00.6

, -0.35 

, -0.35

ool

Fig. 7.2. Propagating surfaces, rectangular mesh, e =0.1.
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Fig. 7.3. Triangulation used for the propagating surfaces.
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p2, triangles P3, triangles

2 2

•=0.6 t:0.6

t • • 0.3 t= 0.3

y yF
F 7 r ti=g. ta .s

S- 0.35 - 0.35

Fig. 7/.4. Propagating surfaces, triangular mesh, 6 0 .
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p2, triangles p3, triangles

t =0.0 t=O0.0

Fi-.0.35 7s-l0.35

Fig. 7.5. Propagating surfaces, triangular mesh, =0.1.
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Fig. 7.6. Triangulation for the propagating surfaces on a disk.

P2, triangles P3, triangles

t=0.0 t= .0.

Fig. 7.7. Propagating surfaces on a disk, triangular mesh, 6 0.
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p
2
, triangles P3, triangles

S=1.2t=1.2

Fig 7-8.2 0 .2

Fig. 7.8. Propagating surfaces on a disk, triangular mesh, s 0.1.
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Abstract. These notes present an introduction to the spectral element method
with applications to fluid dynamics. The method is introduced for one-dimensional
problems, followed by the discretization of the advection and diffusion operators
in multi-dimensions, and efficient ways of dealing with these operators numeri-
cally. We also discuss the mortar element method, a technique for incorporating
local mesh refinement using nonconforming elements; this is the foundation for
adaptive methods. An adaptive strategy based on analyzing the local polynomial
spectrum is presented and shown to give accurate solutions even for problems with
weak singularities. Finally we describe techniques for integrating the incompressible
Navier-Stokes equations, including methods for performing computational linear
and nonlinear stability analysis of non-parallel and time-periodic flows.
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1 Introduction

High-order numerical methods have been used almost exclusively in the di-
rect numerical simulation of turbulent flows in the last two decades. Under
the broad heading of "high-order methods" we include expansions based on
Fourier series, orthogonal polynomial series, and compact finite difference
schemes. These methods have been used in studies of transition and turbu-
lence because they offer fast convergence, have small numerical dissipation
and dispersion errors, and can be implemented efficiently on most modern
computer architectures, including vector and parallel supercomputers. Al-
though they have a higher computational cost per grid point than low-order
finite difference, finite volume, or finite element schemes, they are ultimately
more efficient for the long-time integration of unsteady flow problems [55].

For all their advantages, there are two key issues that prevent these meth-
ods from being applied to more general problems in fluid dynamics: the ability
to simulate flows through geometric complex domains with general bound-
ary conditions, and the ability to incorporate local mesh refinement as part
of the convergence process. In these notes we describe a class of discretiza-
tions that have the advantages of global spectral methods outlined above, but
are not subject to their limitations of simple geometries and uniform grids.
These newer techniques go under the name of spectral and h-p finite element
methods, or simply "spectral elements" as they will frequently be referred to
here.

Spectral element methods combine the generality of finite element meth-
ods with some basic ideas from approximation theory about what constitutes
a "good" interpolant. By subdividing a complex domain into macro-elements,
they can provide accurate solutions to many problems with substantially
fewer degrees of freedom than low-order discretizations. High accuracy comes
from the use of orthogonal polynomial expansions to represent the solution
over a single element. Galerkin projection operators relate the differential
and algebraic equations and keep the global system "sparse" by imposing the
minimal continuity requirement on the approximate solution. However, the
ability to simulate more general problems with arbitrarily high-order accuracy
does not come for free! A polynomial spectral code with domain decompo-
sition and adaptive mesh refinement capabilities is much more complex that
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either its Fourier series or finite element counterpart. One purpose of these
notes is assure the reader that the benefits of spectral element methods far
outweigh the cost of implementation.

Spectral and h-p finite element methods are most commonly based on
Chebyshev and Legendre polynomials. These are complete orthogonal sets
that can be computed easily from a three-term reccurence formula. How-
ever, other polynomials can be useful for special cases. All of the "good"
polynomial series for numerical methods are derived from the same class of
Jacobi polynomials, P•,"1(x). These are the eigenfunctions of an appropri-
ately defined singular Sturm-Liouville problem. These polynomials form an
expansion basis for representing square-integrable functions u(x) G L2 . The
unknowns of the expansion could be the nodal values of the function on a
selected grid or other coefficients that weight the importance of polynomials
(modes) of different order. The details depend on exactly how the basis is
formed and implemented.

Eigenfunction expansions based on singular Sturm-Liouville problems
converge at a rate governed by the regularity (smoothness) of the function
being expanded and not by any special boundary conditions. Numerical so-
lutions of differential equations based on these expansions have the same
property. This observation is important for fluid dynamics, especially for
simulations of incompressible flows since these flows are free of discontinu-
ities and can typically be approximated well by polynomials. If the solution
is sufficiently smooth then the discretization error decays exponentially fast
to zero, at least asymptotically. Doubling the grid resolution reduces the er-
ror by two orders of magnitude, not by a mere factor of four as in typical
methods with second-order algebraic convergence. Fast convergence is one
key to the computational efficiency of high-order methods: they often require
a higher operation count than low-order methods for a given number of de-
grees of freedom, but they require fewer degrees of freedom for a given level
of accuracy.

Exponential convergence of numerical solutions in practical situations de-
pends on a number of factors. Although frequently cited as the primary mo-
tivation for using high-order methods, exponential convergence only occurs
once all but the exponentially small high-order components of an approx-
imation have been resolved; it is probably the exception rather than the
rule in simulations of complex phenomena like turbulent flows.1 Convergence
is tied closely to issues like the non-uniformity of the mesh, the form of
geometric singularities (e.g. corners), discontinuities in the boundary condi-
tions, and so forth. Such features degrade convergence because they propa-
gate into the high-order components of the solution. These features must be
isolated or resolved before fast convergence is realized. Multidomain spectral

1 There are other advantages, such as low numerical dissipation and dispersion

errors, that make high-order methods attractive candidates for simulating tur-
bulence even though a flow may be marginally resolved.
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discretizations like the ones considered here offer such a possibility due to
their dual path of convergence. The accuracy of the numerical model can
be increased in two ways: by increasing the number of subdomain elements
(h-refinement), or by increasing the polynomial order of a fixed number of
elements (p-refinement); this flexibility makes the methods robust.

The following example demonstrates some of the advantages and limita-
tions of spectral elements. Figure 1.1 shows results from a simulation of flow
past a half-cylinder [43]. This simulation could not be performed with any
method based on global expansions because the domain cannot be mapped to
a simpler form. Domain decomposition is a natural choice for the discretiza-
tion. However, the sharp corner of the body and the relatively thin shear layer
make the flow difficult to resolve. In the lower image there are obvious "wig-
gles" in the computed vorticity field indicative of insufficient resolution. These
are equivalent to the familiar aliasing errors in Fourier spectral methods, but
manifest in the high-order components of the polynomial approximation. In-
creasing the polynomial order in this case is a particularly inefficient way to
improve the approximation - the geometric singularity prevents fast conver-
gence. The fix is to perform local mesh refinement of the boundary layer and
near-wake as shown in the upper part of the figure. Again, no method based
on global expansions is capable of this path to convergence.

Fig. 1.1. Vorticity in the wake of a half-cylinder at Re - 250: (a) locally refined
mesh using nonconforming spectral elements to resolve the boundary layer and near
wake; (b) conforming mesh where the solution exhibits "wiggles" due to insufficient
resolution. Both simulations are performed with order p = 7.
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Spectral elements, like finite elements, require that each subdomain in the
mesh be conforming, that is aligned edge by edge with each neighboring sub-
domain. This requirement is a natural result of the continuity imposed on the
discrete solution. Unlike finite elements, spectral elements represent a coarse
discretization of the geometry and achieve high accuracy by using a fine mesh
on the interior of each element. Conforming finite elements are not partic-
ularly restrictive, but conforming spectral elements make mesh refinement
difficult to implement and the improved solution expensive to compute.

Notice that the refined mesh in figure 1.1 contains nonconforming el-
ements. These are elements that do not connect to an entire neighboring
edge, and as a result special constraints are required to impose the correct
continuity conditions on the solution. In spite of the increased complexity,
nonconforming elements are key to the efficient implementation of adaptive
mesh refinement for spectral element methods. They eliminate the need for
refinement boundaries that propagate through the entire domain, allowing
refinement to be done locally as dictated by some appropriate error indica-
tor.

Background material for these notes can be found in the monographs
by Gottlieb and Orszag [34], Canuto et al. [20], and Boyd [17]. These ref-
erences cover global spectral methods extensively, i.e. expansions on a sin-
gle computational domain. The review article of Maday & Patera [57] also
provides background material, concentrating exclusively on conforming dis-
cretizations. Early work with spectral elements focused primarily on meshes
composed of quadrilateral or hexahedral elements. More recent work has
made important advances in the formulation, including meshes of noncon-
forming elements and triangular and tetrahedral elements. These new tools
are the cornerstones of adaptive mesh generation and true h-p refinement.
This is the class of algorithms emphasized in these notes. In addition to
the basic theory and implementation of spectral element methods, we also
discuss a number of applications to the simulation of incompressible flows.
Finally we discuss useful methods for studying flow instabilities, transition,
and turbulence - all ideal applications of spectral element methods.

2 One-Dimensional Problems

Most of the basic numerical machinery required for spectral element methods
can be described in terms of one-dimensional problems. In this section we
provide a step-by-step formulation of a spectral element solver for a model
advection-diffusion equation to illustrate the procedure before going on to
the Navier-Stokes equations. In higher dimensions we have to worry about
representing the geometry with more complicated elements, but most of the
basic operations are the same.

While reading this section, keep the following point in mind: the proce-
dure used to derive a "spectral" element method is exactly the same as that
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used to derive a finite element method. Any finite element discretization can
be extended to higher order using the methods we discuss here. What we
emphasize are efficient ways to achieve high-order accuracy within the finite
element framework, using concepts developed originally for spectral methods.
To stress this connection, we try to keep the notation as close as possible to
that used in standard finite element textbooks.

2.1 Galerkin formulation

Suppose we want to find u such that

u"+f=0 on 2, (2.1)

where S2 is the unit interval 0 < x < 1 and f : [0, 1] -* 7R is a given smooth
function.2 At the endpoints we will specify the boundary conditions

u(0) = g, (2.2a)

u'(1) = h. (2.2b)

This defines the strong form of the problem, the usual starting point for finite
difference and spectral collocation schemes.

Consider the following alternative formulation of the same problem. We
begin with the equation for the residual,

R(u) = w(u" +f) dx, (2.3)

from which we want to find the unique function u that drives the residual to
zero. The search will include all functions satisfying the boundary condition
u(0) = g; each candidate is called a trial solution, and we denote the set of all
trial solutions by S. The residual is orthogonalized with respect to a second
set of functions w E V called test functions or variations. Each test function
should satisfy w(0) = 0. To incorporate the Neumann boundary condition
we integrate (2.3) once by parts, finding that R(u) = 0 if

f w'u' dx = wf dx + w(1)h. (2.4)

For this expression to make sense, both u and w must have square-integrable
first derivatives, i.e. fO(u') 2 dx < cc. Recognizing that such functions belong
to the Sobolev space H', we can summarize the sets of trial and test functions
as:

S = {u I u E H1, u(0) = g}, (2.5)
V-- {w I w E HI, w(O) =0}.

2 We use the term smooth as a qualitative description of a function's higher deriva-

tives. A smooth function f(x) has bounded higher derivatives f(') (x).
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If we identify the symmetric, bilinear forms a(w, u) = fo w'u' dx and (w, f) =
fs wf dx, then we can state the weak form as follows: find u E S such that
for every w E V

a(w, u) = (w, f) + w(1)h. (2.6)

Equation (2.6) is still an infinite-dimensional problem, because the spaces
S and V each contain an infinite number of functions. Galerkin approximation
solves (2.6) using a finite collection of functions: find uh E Sh such that for
every wh E Vh

a(wh, uh) = (wh, f) + wh(1)h. (2.7)

This method reduces an infinite-dimensional problem to an n-dimensional
problem by choosing a set of n basis functions (01, 02,... , On) to represent
each member of Sh and Vh. It admits all linear combinations wh E V•h as
wh = C10 1 + c2 02 + ... + Chert, where each qp(O) = 0. To generate the trial
solutions we need one additional function satisfying 0n+1(0) = 1 so that if
uh E Sh then

n

uh = g€n+i + E dpop. (2.8)
P=1

Note that with the exception of ¢n+1, Sh and Vh are composed of the same
functions.

Substituting uh for u and wh for w, the weak form becomes
n

E cpGp = 0, (2.9)
P=1

where

Gp= [a(¢p, bq)dq (2.10)
q=1

-(Op, f) - Op(1)h + a(¢p, Cn+)g1]•

Since this must be true for any choice of the cp's, we require Gp - 0. If we put
the coefficients dp into a vector d, it becomes the matrix problem Ad = F,
where the matrix entries are given by Apq = a(qp, Oq) and the components
of the vector F are Fp = (Op, f) + Op(1)h - a(op, o7 +1 )g. The solution is
d = A- 1F. Quite literally, this is a best fit of the approximate solution uh

to the true solution u based on the measure of error given in (2.3).
The Galerkin formulation, treated in most standard texts on finite ele-

ment methods [44, 76], is one example of a general class of techniques called
weighted residual methods [29]. For certain differential equations it reproduces
the underlying variational principle if one exists. The idea behind a varia-
tional principle is that some physical quantity, such as potential energy, is
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minimized over the problem domain. For example, the Rayleigh-Ritz princi-
ple corresponding to (2.1) minimizes the quadratic form

I(u) = (u)2dx- f uf dx. (2.11)

The Galerkin formulation produces the same solution, but it can be developed
even for differential equations that have no corresponding variational form.

2.2 Basis functions

Galerkin approximation is "optimal" in the sense that it gives the best ap-
proximation in the restricted space Sh. If the true solution u lies in the
intersection of Sh and S, then uh = u. But the success of the method lies
in the selection of the basis functions. If they are too complicated it will be
impossible to generate the matrix problem, too simple and they cannot ad-
equately describe the true solution u. The key is to combine computalility
and accuracy. Spectral elements accomplish this in the following manner.

First, the domain is partitioned into K non-overlapping subintervals,
where each subinterval, or element, is given by S"k = [ak, bk]. On element
k we want to introduce a set of local functions that provide accuracy of order
N for the solution over that piece of the computational domain. For spectral
element methods, the basis functions are invariably polynomials.

Often the most convenient approach is to form a set of polynomials from
the Lagrangian interpolants through a particular set of nodes. Recall that the
Lagrangian interpolant takes the value one at some node xi and is zero at all
other nodes. The simplest set of nodes would be the equally spaced points
xi = ak + (bk - ak) i/N. Of course, this turns out to be a terrible choice for a
high-order method because the basis is almost linearly dependent, resulting
in ill-conditioned algebraic systems. It is not the choice of Lagrangian inter-
polants but the choice of nodes we define them over, so to fix the problem we
just need to choose a "good" set of nodes, and this is where spectral methods
start to shape the formulation.

To standardize the basis, we introduce a parent domain with the coordi-
nates -1 < ý < 1, and a coordinate transformation to the elemental nodes
as

xi = ak + b (1 +). (2.12)
2

Now we choose the nodes Ci to be the solutions of (1 - C2) Lv(C) = 0, where
LN(C) is the Legendre polynomial of degree N. With this special choice, the
Lagrangian interpolants can be written down explicitly as

(1 -1) L'() (C(2.13)N(• = WN + 1) Ln(Ci) (C -- 6)"
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4 0 __________ (b)

ak X

X b k

Fig. 2.1. One-dimensional spectral element basis functions for an expansion order
of N = 4, along with a sketch of the local and global coordinate systems: (a) modal
basis constructed from P,'" (a); (b) Gauss-Lobatto Legendre basis and the set of
nodal points that define them as Lagrangian interpolants.

These polynomials are called the Gauss-Lobatto Legendre (GLL) interpolants.
Figure 2.1 illustrates the mesh and basis functions for a typical element. We
will refer to any basis defined this way as a nodal basis.

There are several important reasons for choosing this set of polynomi-
als. First, the expansion of any smooth function using the GLL interpolants,
u _ uh = ddioi(x), converges exponentially fast, as can be demonstrated
by singular Sturm-Liouville theory [34]. Because these are Lagrangian inter-
polants, the coefficients di are simply the nodal values of the approximate
solution: di = uh (xi). Also, there is a set of integration weights Pi associated
with the nodes ýj so that the integrals appearing in the weak form can be
computed via the GLL quadrature

1 N

ffd = N (2.14)
i=O

where the error EN _ -(f 2 N(()) for some point --1 < _< 1; as long as
the integrand is a polynomial of degree less than 2N this quadrature rule is
exact [25]. Finally, and perhaps most importantly, the interpolants, quadra-
ture points, and weights can be generated within a computer program by
recursive algorithms that are numerically stable through values of N - 100,
eliminating the need to store static tables of quadrature data.
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Legendre polynomials are one example of a broad polynomial class called
the generalized Jacobi polynomials, which we denote as P•,•(•). Legendre
polynomials correspond to the parameter values a = 0, 3 = 0. Sometimes,
especially in higher dimensions and on more complex domains, it is more
convenient to work directly with the polynomials rather than an intermediate
Lagrangian basis. Jacobi polynomials have the orthogonality property

6( - )(1 + 6)1Pj'(6)Pý'(6) d6 = 6ij. (2.15)

We can use Jacobi polynomials directly to represent a function through the
expansion uh = E diPc' (x). The values di are the coefficients of the basis
functions but they do not correspond to any set of nodal values. In practice,
there is a significant advantage if most of the basis functions are orthogonal,
so in the one-dimensional case we would use:

00o(6) = + 6),
1 = ( (1 - 6), (2.16)'(1+ 6(1 6P1,1(6,i>2

4••=(+)1• i-2(•,i 2

Figure 2.1 shows the first five basis functions constructed this way. In the
nodal basis every function is a polynomial of degree N. In the modal basis
there is a hierarchy of modes starting with the linear modes, proceeding with
the quadratic, the cubic, and so on. Such a basis can accommodate hierarchi-
cal p-refinement more readily by increasing the polynomial order. It is also
useful to distinguish between hierarchic and non-hierarchic representations.
In a hierarchic basis we can easily define a sequence of approximation spaces
such that Sn C Sn+l. This ensures that the error decreases monotonically;
in non-hierarchic constructions this may or may not be possible [7].

We will refer to spectral elements constructed from a nodal basis as La-
grange spectral elements and to those based on a modal basis as h-p ele-
ments. The latter were first introduced in the early seventies by Szabo [77]
who used the integrals of Legendre polynomials as a modal basis, taking

-1P,` (s) ds. However, using the properties of Jacobi polynomi-
als [1] we obtain

2n P0- (s) ds = (1 - ý)(1 + ý)P'2() (2.17)

which is the same as the basis in (2.16) except for the normalization.
The choice of which approach to take is somewhat arbitrary since a nodal

basis can always be transformed to an equivalent modal basis and vice versa.
The Fast Fourier Transform (FFT) is one familiar example of such a trans-
formation onto the basis bk (ý) = exp(ikC). Unfortunately, there are no "fast
transform" methods for Jacobi polynomials and the transforms require ma-
trix multiplication. However, for the values of N used in practice (N < 16)
this is not a serious drawback. Note that for a given polynomial order, the for-
mal accuracy of any basis is the same. Although the modal basis may at first
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appear to have an advantage for performing local p refinement, the nodal
basis can be implemented as a matrix-free method that suffers no penalty
for increasing the local polynomial order. The simplicity of working with
grid-point values in the nodal basis is an attractive feature. Ultimately, the
decision is a matter of personal choice-there is no convincing argument for
the exclusive use of one basis type over the other.

For the remainder of this section we will work with the GLL polynomials,
but when we introduce the basis on triangular and tetrahedral subdomains
we will switch back to the modal point of view.

2.3 Discrete equations

Returning to the problem of solving (2.7), we begin by noting that the integral
can be broken into a sum of integrals of each element:

K

a(Op, Oq) S a(Op, Oq) Sk.
k=1

Since each basis function is non-zero over a single element, the inner product
a(Op, qq) is non-zero only if Op and Oq "belong" to the same element. This
makes the global system sparse, and allows us to compute only local matrices.
Because of the origin of finite element methods in computational mechanics,
these matrices are traditionally called:

64 Mk

"mass" Mpq = fnk fOpqq dx,

"stiffness" Apk fs2• Op)q dx.

To construct the right-hand side of the matrix system, f(x) is approximated
by collocation at the nodal points to produce fh(x); the mass matrix pro-
vides the coefficients necessary to perform the integration. Now the elemental
matrix system may be written as

Akvk = Fk (± boundary terms). (2.18)

Just as the integral over the entire domain can be written as a sum of the
integral over each element, the global matrices can be computed by summing
contributions from the elemental matrices:

K K

A = S/Ak, M = YtMk. (2.19)
k=1 k=1

The symbol E-' represents "direct stiffness summation," the procedure dia-
grammed for the nodal basis in Fig. 2.2 that maps contributions from the
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boundary node shared by adjacent elements to the same row of the global
matrix A. The global matrix system is

Av = F (+ boundary terms). (2.20)

A is banded as a result of using local basis functions, with all of its non-zero
entries located in the N diagonals above and below the main diagonal. It is
also symmetric, due to the symmetry of a(-,-), and positive-definite. Thus A
can be computed, stored, and factored economically and efficiently.

Coupling at boundary nodes

U,

interior nodes

- US

A i n2 iteriornodes"•. boundary nodes

3 • interiornodes

al •2 •3

Fig. 2.2. Schematic of the direct stiffness summation of local matrices Ak to form
the global matrix A.

Spectral element discretizations encompass both spectral methods and
finite elements. Standard approximation error estimates for Galerkin methods
applied to elliptic problems on quasi-uniform meshes predict that

Ilu - uhtll <_ const. x hl'-N-(k-1)jHuINk, (2.21)

where p = min(k, N + 1), N is the polynomial degree appearing in the basis
functions, and h is a parameter related to the element size [7]. The constant
depends on the degree of mesh quasi-uniformity. There are two ways to im-
prove the approximation: make h smaller (K -- co), or make N and p larger
(N -ý co). The latter results in exponential convergence for smooth solu-
tions. If a solution varies rapidly over a small region, any polynomial fit will
oscillate rapidly and the best approach is to reduce the element size until
the solution is resolved locally. A more effective approach is to combine the
two convergence procedures, increasing both K and N simultaneously; this
dual path of convergence is known as an h-p refinement procedure [77]. The
flexibility to adapt the mesh to the solution makes spectral element methods
quite robust. The following example clarifies these concepts.
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2.4 Example: Burgers equation

Consider the nonlinear differential equation

--U 2 + --- u = V 1-2U (2.22)

subject to the homogeneous boundary conditions u(-1) = u(1) = 0, and
smooth initial conditions. Introduced by J. M. Burgers [19], this equation
represents a simplified model of the more complicated Navier-Stokes equa-
tions that captures the essential features of incompressible fluid dynamics: an
unsteady term, a nonlinear advection term, and a viscous diffusion term. Our
goal is a numerical method to follow the evolution of a waveform governed
by this equation.

Let un(x) P u(x, tn) be the approximate solution at time level tn = nAt,
where At is the time step and n is the time step number. In order to treat
the linear and nonlinear terms in the most efficient way possible, we can
integrate (2.22) using the two-step splitting scheme

tU 2 9 / q (un-q)2, (2.23a)

q=O

At 2Ox2 (u + (2.23b)At 2 5X-2(

The nonlinear term is treated explicitly with a third-order Adams-Bashforth
scheme while the linear term is handled with an unconditionally stable,
second-order Crank-Nicolson scheme. The values of the 8q's are:

00 = 23 1 = -- , 02 = 5 (2.24)

12' 3' 12

Since fi is just an intermediate solution used to decouple the two steps, bound-
ary conditions will only be applied in the diffusion step to un+1 .

Spectral elements form the spatial discretization, so on element k we have

N

un(x) = uii(6) on Sk, (2.25)
i=O

where the basis coefficients ui are to be determined at each new time level.
First we take the nonlinear step,

At _ 2 (2.26)
qOx

using explicit collocation:

N (22

2 E(Zuioi(6)) on S2k. (2.27)
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This expression is evaluated at every nodal point. To compute the Galerkin
approximation to the diffusion step, (2.23b) is first written in the form

(a2 2 V =t 2 (ft +u'), 
(2.28)

where v = •(Ufl + un). This form, called a Helmholtz equation, is simply
(2.1) with an additional term multiplying v. The spectral element approxi-
mation of (2.28) results in the algebraic system

[A + 2ltMl v [ 2M] (f, + un), (2.29)

where A and M are the global stiffness and mass matrices defined in (2.19),
and v, i1, and uf are vectors containing the basis coefficients that determine
the approximation vh ; v, etc. The solution at the new time level is u0+ 1 -

2v - Un.

0.5

001

-0.5

2/n,

-1 -0.5 0 0.5 1

Fig. 2.3. Evolution of a sinusoidal wave governed by the viscous Burgers equation
with v = 10- 2/7r. The structure of the wave is shown at times from t = 0 to
t = 10/7r.

Burgers' equation can be solved analytically for certain initial conditions.
Figure 2.3 shows how an initial sinusoidal wave evolves into a steep sawtooth
wave at a time near t = 1/7r. The exact solution is given by

u(x, t) = 47rv LEn=1 nanen 2 ,2tv s (2.30

(ao + 2 E00, ane - 2 , 2,V cos nrx)]
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where a, = (-1)nIn(1/27rv) and In(z) is the modified Bessel function of the
first kind [13]. As long as the viscosity v is finite the profile is continuous
but varies rapidly within a narrow region around the origin. The value of the
slope at the origin and the time at which it reaches a maximum provide a
measure of both spatial and temporal errors in the approximation.

Figure 2.4 shows a sequence of mesh refinements in which the elements
near the origin are halved in size while the polynomial order is held fixed at
N = 10 (h-refinement). On the coarsest mesh the solution begins to oscillate
as the wave becomes steeper but eventually recovers as the thin inner layer
diffuses outward. Each mesh in Fig. 2.4 contains the same number of points-
the only difference is the size of the elements, and therefore the distribution
of points in the domain. By clustering points near the origin, the final mesh
resolves the thin inner layer and improves the solution without increasing the
computational cost.

This final mesh, with (K, N) = (4, 16), gives four significant digits for
both max(Jiu/taxI) = 152.06 and the corresponding time rt = 1.6033. Even
with a coarser mesh, Fig. 2.5(a) shows that the wave moves at the correct
speed towards the origin. Figure 2.5(b) verifies that the approximation to the
derivative converges exponentially, and in fact the error eh = O(u - uh)/Ox
is bounded by

log Ilehloc 1 aN + log I1ull + const., (2.31)

where a ; -1/4. The scatter in the convergence data is due in part to the
different approximation properties of odd versus even order polynomials. A
general comparison of convergence properties and approximation errors for
spectral element, finite difference, and global spectral methods applied to the
viscous Burgers equation is'given in [12].

We have just observed two important properties of spectral element ap-
proximations. First, high-order spatial discretizations result in low numerical
dissipation, i.e. the correct wave speed was maintained on each mesh. This
is an important property for long-time integration of unsteady flows as dis-
cussed in the Introduction. Second, spectral accuracy is achieved for rapidly
varying solutions as long as the solution is resolved adequately on the scale of
a single element. These properties make spectral elements ideally suited for
solving the equations governing incompressible fluid dynamics, where similar
phenomena appear as boundary layers and shear layers. Local mesh refine-
ment was a simple matter in this one-dimensional example, but for more
interesting two- and three-dimensional problems it becomes one of the most
important features of the discretization.

3 Multi-Dimensional Problems

3.1 Basis functions in d-dimensions

A key to the efficiency of high-order methods in two- and three-dimensional
problems is the formation of a basis from the tensor product of one-dimensional
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Fig. 2.4. A demonstration of how high-order methods combined with mesh refine-
ment can be used to resolve rapidly varying solutions. The size of the elements used
for each calculation is indicated below the corresponding solution.



Adaptive Spectral Element Methods 241

150
__ N=6

'100 . N=8

N=10

50

0 
(a)

0 24 10
tI7

10

- 0 -1/4

0.1 .

0.01

0.001 (b)

10 15 20

N

Fig. 2.5. Numerical integration of the viscous Burgers equation: (a) evolution of
IOu/Oxlx=o for three different meshes and (b) reduction of the error in max(JOu/Oxj)
with increasing polynomial order N.
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functions. Among other things, this allows the computation of integrals and
derivatives of the basis functions to be simplified through a procedure called
sum factorization [65]. It also contributes to the sparse structure of matrix
systems for multi-dimensional problems.

In this section we describe the procedure for constructing an efficient,
high-order basis on two- and three-dimensional domains. To keep the discus-
sion simple, we only consider the standard domains Rd and Td, where d is
the problem dimension. Figure 3.1 defines the standard rectangle, R2 , and
Fig. 3.2 defines the standard triangle, T 2. "Standard" here means that the
coordinates are normalized to fall in the range -1 to 1. For d = 3, the stan-
dard domain is a hexahedral or tetrahedral element. Isoparametric mappings
can always be used to transform more general elements to these standard do-
mains, as illustrated in Fig. 3.1. On the standard element, we wish to define a
polynomial basis, denoted by Oij (61, 62), so that we can represent a function
uh(ý,, 62) by the expansion

N N
Uh (61, 2) - E 1: ?ij Oij(61, W),

i=O j=0

where uij is the coefficient of the basis function Oij and ' = ( 2) is the
local coordinate within the element.

Fig. 3.1. Definition of the standard quadrilateral domain R2. General curvilinear
elements can always be mapped back to the standard element as shown.

For quadrilateral (two-dimensional) and hexahedral (three-dimensional)
elements, the procedure is straightforward. For example, on the domain Q2k

R2 , the basis would be

where ¢j(ý) is the one-dimensional GLL polynomial defined in § 2. In this
case, uij represents the function value at the node ýjj. The three-dimensional
basis on R3 is exactly analogous to this one.
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Fig. 3.2. Definition of the standard triangular domain T 2. Here r - and s 5-

To introduce the expansion basis for the standard triangle T 2 , we first
need to define a basic coordinate mapping as illustrated in Fig. 3.3. The
rectangular domain R 2 can be mapped into the triangular domain T2 by the
transformation:

=71h = (1 + (3.1)772 = ý2.-

The triangular basis is now partitioned into interior modes and boundary
modes. Interior modes are zero on the boundary of the triangular domain,
similar to the bubble modes used in p-type finite element methods [6, 64].
Boundary modes can be further partitioned into vertex and edge modes. Ver-
tex modes vary linearly from zero to one along the edge of the triangle. Edge
modes are only non-zero along a single edge of the triangle, and are zero
along the other edges and at all vertices.

Using the notation shown in Fig. 3.3 and recalling that Pnl'0(6) refers to
the Jacobi polynomial, we can write the triangular basis as follows:

- Vertex modes

Overtex A 1(1-61)(1-62)

10 =ertexB 1(1 61)(1 -62))

Overtex0 B
2

- Edge modes (i > 2,j > 1;i < L,i+j < L)
,edge-1=

O - 2 (1 + 61) (1 - 61) (1 - 6)P1 (1),

edge2 1
Odj 8 (1 + 61) (1 -1)(1 + 62)' Pj'j (62),

edge 3 1Oij 8 (1 - 61)(1 - 62)(1 + 62)i Pj-121 (62);
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- Interior modes (i > 2,j > 1;i < L,i +j < L)

•interior= 1

(1 + 62)(1 - 1 p - 6)

The indices ij refer to the principle polynomial in the 61 and 62 direction.
L denotes the total number of modes associated with each direction, i.e. the
maximum polynomial order along an edge is N = L - 1. For example, if
L = 2 there are only vertex modes, giving us a linear finite element basis.

This is a polynomial basis in both the 7 and ý coordinates. In the ý coor-
dinate system it forms a tensor product, so basic operations such as integra-
tion and differentiation can be performed using equivalent one-dimensional
operations just like the tensor product basis on Rd. It also accommodates
exact Gauss-Jacobi quadrature and maintains a partial orthogonality be-
tween the modes. This partial orthogonality helps keep the matrices formed
from inner products of the basis functions sparse. More details about the
two-dimensional basis can be found in [27,75].

The two-dimensional mapping is the foundation for constructing a coor-
dinate system in the tetrahedral domain T1, starting from the coordinate
system for the hexahedral domain R3 . Figure 3.4 shows how R3 is reduced
to T3 by applying the coordinate transformation given in (3.1) to each pair
of coordinates. The inverse mapping is

ýi = -2(1 + 71)/(712 + 773) -1,
62 = 2(1 + 72)/(1 - 'q3) - 1, (3.2)
63 = ?73.

For 773 = -1, we recover the two-dimensional mapping. The three-dimensional
basis for T 3 is then decomposed into vertex modes, edge modes, face modes
and interior modes, in analogy with the basis on T2 ; details can be found in
[74].

In the remainder of this Chapter we will use the following simplified nota-
tion. Every index (ijk) in the tensor product basis will be mapped to a single
number as p =i jN + kN 2, so there is a one-to-one correspondence be-
tween Op (ý) and Oijk (a). This hides the tensor product nature of the basis but
makes the discrete equations much easier to write down. When necessary, we
can "unroll" the p index to take advantage of the tensor product form. This
expression for p is valid for quadrilateral elements only; a modified expression
should be used with the triangular domains.

3.2 Data structures

Here we describe the data structures and basic operations required to imple-
ment the most common procedures in spectral element methods. We cover:
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Fig. 3.3. Schematic of the transformation from R2 to T2
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Fig. 3.4. Schematic of the transformation from R3 to T.
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representation of the global system, how to transfer global data to local (el-
ement) data, direct stiffness summation, and finally the procedures for in-
tegration and differentiation of solutions defined on geometrically complex
two- and three-dimensional elements.

Implementation First we start with the representation of the solution
within a computer program. In this section we give several examples as
pseudo-code fragments that follow basic C and C++ syntax. This is not
meant to be an in-depth presentation, but simply an illustration of the most
important ideas and the basic approach.

In spectral element methods, as in finite element methods, global data is
stored as a flat, unstructured array. The basic data structure used to relate the
mesh to entries in this array is a table that identifies the global node number
of a local node within each element. Since we are interested in both nodal
and modal descriptions, we replace "node" with the more general concept
of a "degree of freedom" in the global solution. The table of indices can be
stored as a two-dimensional array of integers:

map [k] [i] = global index of local datum i
in element k.

Local data can be stored in any convenient, regular format. In our first
version, we will assume the number of degrees of freedom in the mesh (ndof)
and the number of degrees of freedom associated with each element (edof)
are constant. To perform some global operation, for example to evaluate a
function v = F(u), we insert a layer of indirection between the unstructured
global data and the structured local data. The following is a template for any
such computation:

for (i=O; i < ndof; i++) // Initialize v
v[i] = 0.;

for (k=O; k < nel; k++) { // Loop over elements
for (i=O; i < edof; i++) // Copy global data

uk[i] = u[ map [k] [i] ]; // -- gather

compute (uk, vk); // Compute v=F(u) locally

for (i=O; i < edof; i++) // Accumulate the result

v[ map[k][i] ] += vk[i]; // -- scatter

Depending on the specific operation, the final result may need to be cor-
rected in some way: rescaled with the global mass matrix, averaged based on
the data multiplicity, or some similar global operation. The last loop corre-
sponds to direct stiffness summation, and in our matrix notation we would
write this same operation as:

K K

v = ZIv k= 'F(uk) = F(u). (3.3)
k=1 k=1
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To make this data structure suitable for both hierarchical bases and non-
conforming elements (to be developed in § 3.5), we introduce two generaliza-
tions. First, we allow the number of degrees of freedom in each element to be
different by replacing the constant edof with the array edof [k]. Second, we
allow each local degree of freedom to depend on an arbitrary combination of
the global degrees of freedom. To implement this we need to introduce two
new arrays:

idof [k] [i] = number of global dependencies for
local datum i in element k,

combine [k] [i] = array of coefficients for combining
global data to get local data.

And finally, we need to add a new dimension to our index table:

map [k] [i] [j] = global index of the jth dependency
of local datum i.

In effect, we are introducing a set of coefficient matrices Zk that define a
general transformation between global and local degrees of freedom. Using
this approach, the global initialization, loop over the elements, and function
call for the local computation shown above stay the same, but the procedure
for constructing the local data is re-written as follows:

for (i=O; i < edof[k]; i++) // Initialize
uk[i] = 0.;

for (i=0; i < edof[k]; i++) { // Combine
real *Z = combine[k] [i];

for (j=0; j < idof[k] [i]; j++)
uk[i] += Z[j] * u[ map[k] [i] [j ;

}

Likewise, the accumulation of results uses a similar method for combining
local contributions to the global degrees of freedom:

for (i=O; i < edof[k]; i++) { // Combine
real *Z = combine[k] [i] ;
for (j=0; j < idof [k] [i]; j++)

v[ map [k] [i] [j] ] += Z~j] * vk[i];
}

We also introduce a new matrix notation for this more general approach.
Since the local data is Zku, and the local contribution to the global system is
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[Zk]Tvk, the equivalent procedure for assembling the global system is written
as:

K K

v = Z'[zk]Tvk = Zi[zk]TF(Zku) = F(u) (3.4)
k•1 k=1

Compare this to (3.3) above, and note that the only change is how we trans-
form between the local and global systems. The actual computations at both
the local and global level are the same.

In the remaining sections we will describe computations in terms of either
the local or global system, omitting the actual "assembly" required to go be-
tween them. Equation (3.4) is always implied as the method for recovering
local solutions and assembling global ones. This simplifies what would oth-
erwise become a confusing barrage of notation. Along the way we will give
more specific information about how the coefficients for the mapping matrix
Zk are chosen. This is a very flexible scheme for storing the global solution
and reconstructing the local one. The additional storage and computational
overhead is simply the price we pay for new capabilities: variable order of the
local basis functions and arbitrary connectivity in the mesh. However, these
are the key ingredients for adaptive h-p refinement techniques!

Improvements Although the scheme outlined above is complete, it is not an
efficient way to implement h-p methods: too much of the addressing is done
by indirection. One of the computational advantages of high-order elements is
the natural partitioning of data into sets that can be operated on as a group.
For example, local degrees of freedom are normally partitioned into several
groups: vertices, edges, faces, and interior data. Data associated with any of
these groups can be operated on as a single entity. For example, all the points
on the interior of an element can be identified with the element number and
moved around or computed on as a single unit. High-order elements provide
better data locality than low-order elements because computations always
involve large amounts of data that can be grouped together in memory.

The type of full indirection outlined above is only necessary for the degrees
of freedom associated with the surface of an element. These data make up the
loosely-coupled components of the global system. This sparse global system
forms the "skeleton" of the discretization and shares many characteristics
with low-order finite elements. For example, the numbering system stored
in the index table can be optimized to reduce its algebraic bandwidth using
the same techniques applied in finite element methods (see Sect. 3.6). Unfor-
tunately, more sophisticated data structures than can be described here are
required to incorporate these simplifications; we leave this to the reader as an
important step in the efficient implementation of spectral element methods.
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3.3 Basic operations

Integration The general form for the evaluation of an integral by Gaussian

quadrature with weights (1 - ý) (1 + ý)O can be written as

N

)- (1 + 6)3u(6) dý = E
1i i=O

where V`3 and p•'0 are the quadrature points and weights associated with

the Jacobi polynomial P" 3 (6). The quadrature rule is exact if u(6) is a
polynomial of degree 2N + 1 for the Gauss points, 2N for the Gauss-Radau
points, and 2N - 1 for the Gauss-Lobatto points.

To integrate a function defined over the standard domain R 2 , we simply
use the tensor product form to reduce the integral to two one-dimensional
quadratures. The integral of a general function is written as

N N

R2u() dld62 = E E PiPju(Ni)

i=0 j=0

The extension to integrals over R3 is straightforward.
On the triangular domain, we use a coordinate transformation to simplify

the integral. The integral of a function over T2 becomes

f2 u(,) d71 d772 = IR2 u(C)IJJ d~ld62 ,

where 1J1 = (1 - 62)/2 is the Jacobian determinant of the transformation
,q -+ ý. The integral in C-space can now be evaluated just as the integral over

R 2 . To include the Jacobian, we use a quadrature rule with a = 0, /3 = 0 in
the 61-direction, and a quadrature rule with a = 1,/3 = 0 in the 62-direction.
Integration over T' is performed in a similar way.

Projection To apply the integration rules described above, we need to eval-
uate a function at a given set of quadrature points. For the nodal basis this is
trivial because the basis coefficients are the function values at the quadrature
points. For a modal basis we need an efficient way to evaluate the full solu-
tion at the quadrature points. This, and the related problem of determining
the modal expansion coefficients from a set of nodal values, are both called
projections.

A projection is the procedure for determining the coefficients uijk so that
uh ; u for some given function u. First, recall the general form of the expan-
sion: u() uh(C) = Z up~i()

UW ;Z U h p O
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The expansion coefficients are determined by taking the inner-product with
the basis functions on both sides of this equation:

S= W, 0p)g? Vop E f ijk} (3.5)

Solving this system of equations to determine the approximation uh is straight-
forward if the basis {¢ijk} is orthogonal. Otherwise, we have to compute uh

by inverting a matrix.
To describe this for the modal basis, we introduce the following notation:

UP = vector of P ,- N 3 expansion coeffi-
cients, up +- Uijk;

fiq = vector of Q function values at the
quadrature points, fiq +-- u(q);

Wqq diagonal matrix of Q x Q quadrature
weights required to integrate a func-
tion over f~k;

Bqp = rectangular matrix containing the
value of the basis functions at the
quadrature points (Q quadrature
points x P basis functions).

Now we can write down the algebraic form of the inner-products given in (3.5).
First, the inner product of u with the basis functions:

(u, 0p) s?, -- B Twft.

Second, the inner product of uh with the basis functions:

(uh, OP)k -+ BTWBu.

The approximation uh ;z u is determined by matching these two inner prod-
ucts for every basis function:

BTW ii = BTWB u. (3.6)

This is the fully discrete form of (3.5). Note that the epression on the right-
hand-side defines the mass matrix (0i,0j)S -+ BTWB, or simply M =

BTWB.
Now we can define the discrete projection operator as

u = P(fi) - [BTWB]-lBTWfi.

This is also called the forward transform of a function from physical space
(nodal values) to transform space (modal coefficients). The discrete inverse
transform is simply the evaluation of the modal basis at a given set of points:

fi = P• 1 (u) - Bu.
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Finally we note that in the GLL nodal basis, M is a diagonal matrix. This
follows directly from the discrete orthogonality of the basis functions and the
fact that OP(eq) = 6 pq, where ýq are the GLL quadrature points. A diagonal
mass matrix is a tremendous simplification since multiplication by M- 1 is
trivial.

Differentiation Since the basis is formed from continuous functions, in
principle derivatives can be evaluated by simply differentiating the basis func-
tions:

9uh 0i___=

ijk

In practice we only need the derivatives at certain points, namely the quadra-
ture points. Therefore, the solution is first transformed onto an equivalent La-
grangian interpolant basis defined over the quadrature points. We introduce
the one-dimensional Lagrangian derivative matrix

Dip do__p

Rather than O(N 3) terms, the Lagrangian interpolant basis reduces the sum-
mation to an equivalent one-dimensional operation. The coefficient of the
derivative, Uýk, is then given by

N

Uýj = EDipUpjk.
p=0

Since only O(N) operations are required per point, it takes 0(N 3 ) operations
to compute all derivatives in R 2 or T2 , and O(N 4 ) operations to compute
all derivatives in R3 or T 3. In the modal basis, calculation of derivatives is
preceded by an inverse transform (to nodal values) and followed by a forward
transform (to modal coefficients), therefore increasing the computational cost.

3.4 Spaces and norms

Throughout the rest of these notes we will be concerned primarily with two
function spaces L2 (f2) and H1 (12). We define the inner-product of two func-
tion u and v as:

(u, v) = Juv dQ. (3.7)

For reference we define the L 2 norm as:

l1u1l = (u,u)1/2 Vu C L 2 (02), (3.8)
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the H' norm as:

I uI11 = [(uU) + (u,,, u,,)] 1 2  Vu G Hl(fC), (3.9)

and the infinity norm as:

[Hul 1. = sup lu(x)I Vu c Lo(Q). (3.10)
XEg

For the discrete solution, (3.8) and (3.9) can be evaluated approximately
by numerical quadrature; the infinity norm can be estimated from the basis
coefficients.

3.5 Global matrix operations

Conforming One of the basic principles for maintaining the sparse struc-
ture in the global matrix systems is to enforce only the minimum continuity
between elements. For all of the problems we consider here, the global basis is
required to be C' continuous, i.e. only function values and not derivatives are
required to be globally continuous. For discretizations with both Lagrangian
and h-p basis functions, this is accomplished by choosing a unique set of
global "degrees of freedom" that define the approximation space.

Global continuity in the Lagrangian basis is straightforward. Since the ba-
sis functions are defined as the Lagrangian interpolant through the elemental
nodes, we only have to use the same set of nodes along the edge of adjacent
elements. As long as the elements are conforming (each edge matches up ex-
actly to one other edge) and of equal order (same number of nodes along
each edge), C' continuity is guaranteed. Figure 3.5 shows a possible global
numbering scheme for a simple quadrilateral mesh.

Continuity in the modal basis is more involved because we have to match
up all modes. Depending on the orientation chosen for the triangular ele-
ments, local modes may be a positive or negative image of the corresponding
global mode. This extra bit of information must be tracked as part of the
implementation, and we describe it as one use of the mapping matrix Zk.

Consider a domain made up of two triangular elements as shown in.Fig. 3.6.
The expansion order is N = 3, meaning there are six modes on each triangle:
three vertex modes (1, 3, 5) and three edge modes (2, 4, 6), but no interior
mode. The number of local degrees of freedom for each element is neof = 6,
and the number of global degrees of freedom for the mesh shown is ndof = 9.
The mapping from global to local degrees of freedom for element Q' is:

-J -k k- -J

U2  1 U2

Uk U3 U3 1
U4 1 U4

U5  1 U5

U6 1 U6
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or in short form uk = Zku. Notice that data for each local mode maps to
one and only one global mode, but data for a global mode can be shared by
any number of local modes. The number of local modes that contribute data
to one global mode is called the multiplicity of the global mode.

boundary unknowns

boundary knowns

Fig. 3.5. Local and global numbering for a simple domain composed of two quadri-
lateral elements of order N -- 2. Points along the boundary do not constitute global
"degrees of freedom" and are not assigned indices in the global index set.

/ý 
8

4 64

39

353

Local Numbering Global Numbering

Fig. 3.6. Local and global numbering for a domain containing two triangular ele-
ments. Here the expansion order is N = 3 so there are N(N + 1)/2 = 6 modes in

each element: three vertex modes (1, 3, 5), and three edge modes (2, 4, 6).

Nonconforming An important extension to the original spectral element
method was the introduction of nonconforming elements by Bernardi et al.
"[14]. Here we give only a sketch of the how the method is used to patch
together a nonconforming mesh; for a full description of the method, including

efficient solution techniques and numerous examples, see the references [2, 14,
, 40, 59].
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The main idea is to use a constrained approximation. For a geometrically
and functionally nonconforming set of elements, we cannot guarantee global
C' continuity of the basis. Therefore, we make the basis as continuous as
possible by minimizing the difference in function values across each noncon-
forming interface. We do this by enforcing the following weighted residual
equation:

f(u-v)ods=O V7PEPN- 2 (F). (3.11)

The residual is the difference in two functions u and v that we would like to
be continuous, and 0 is the weight used to perform the minimization. The
algebraic form of this equation is

u = Zv,

where u and v are the coefficients of whatever basis we choose to represent u
and v, and the entries of Z are determined by evaluating the residual equation
using numerical quadrature. We say the values of v are free and the values
of u are constrained to match them such that (3.11) is satisfied.

To use this as a computational tool, we choose v to be the solution along
the edge of some element, and u to be the solution along the edge of an adja-
cent nonconforming element. Equation (3.11) is used to construct u from v,
thereby eliminating u as an "unknown" in the mesh. Since v contributes to
the global degrees of freedom in the problem, this is one type of the "combin-
ing" described in § 3.2. There is an additional consistency error associated
with the nonconforming discretization because the approximation space is no
longer a proper subset of the solution space-it admits discontinuous solu-
tions. As bad as this sounds, the consistency error is of the same order as
other components of the approximation error, and if implemented properly
the method always converges to a continuous solution if one exists.

Nonconforming elements allow quadrilateral meshes to be refined locally,
without the conforming restriction propagating refinement across the mesh. It
is not as important for triangular and tetrahedral elements where algorithms
such as Rivara refinement [66] can be used to perform local refinement and
maintain consistency in the mesh. We will give several examples that make
use of nonconforming quadrilateral elements in the following sections.

3.6 Solution techniques

In this section we will describe efficient iterative and direct methods for invert-
ing the large algebraic systems that result from nonconforming spectral ele-
ment discretizations. Iterative methods are more appropriate for steady-state
calculations or calculations involving variable properties, such as a changing
time step or a Helmholtz equation with a variable coefficient. For direct meth-
ods the issue is one of memory management - storing A as efficiently as pos-
sible without sacrificing the performance needed for fast back-substitution.
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The development of fast direct and well-preconditioned iterative solvers rep-
resents a major advance towards the application of nonconforming spectral
element methods to the simulation of turbulent flows on unstructured meshes.

Conjugate gradient iteration Conjugate gradient methods [11] have been
particularly successful with spectral elements because the tensor-product
form and local structure allows the global Helmholtz inner product to be
evaluated using only elemental matrices. To solve the system Au = F by the
method of conjugate gradients we use the following algorithm:

k = 0; u0 = 0; ro - F;
while rk • 0

Solve Mqk =rk ; k = k + 1
if k = 1

P, = qO
else

Ok=rT lklr T

k -= raqk-1/r- 2 qk-2

Pk = qk-1 + /3kPk-1
end
ak = rT-1qk-1/Pk Apk

rk rk-1 - ak Apk

Uk . Uk_1 + akpk

end
U = Uk

where k is the iteration number, rk is the residual, and Pk is the current search
direction. The matrix M is a preconditioner used to improve the convergence
rate of the method and is discussed in detail next.

Selection of a good preconditioner is critical for rapid convergence; the
preconditioner must be spectrally close to the full stiffness matrix yet easy
to invert. Popular preconditioners for spectral methods include incomplete
Cholesky factorization and low-order (finite element, finite difference) approx-
imations [26,65]. Unfortunately, these preconditioners can be as complicated
to construct for an unstructured mesh as the full stiffness matrix A. Next we
present three preconditioners which are simple to build and apply even when
the mesh is unstructured.

In conjugate gradient methods the number of iterations required to reach
a given error level scales as \/r7-A-. This is only an estimate, since the actual
convergence rate is determined by the distribution of eigenvalues - if all
of A's eigenvalues are clustered together, convergence is much faster. To
assess the effectiveness of a given preconditioner we begin by looking at the
condition number of M- 1A.

Each of the following methods is based on selecting a subset of entries from
the full stiffness matrix. The first two preconditioners are diagonal matrices
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Fig. 3.7. Conjugate gradient iteration convergence history for a Helmholtz equation

with A2 = 1: e = none, A = diagonal, V = row-sum, and 01 = block-diagonal
preconditioner.

Table 3.1. Condition numbers of M-'A for a Helmholtz equation with A2 
= 1.

N None Diagonal Row-Sum Block-Diagonal
5 177 70 46 34
6 278 108 70 52
7 404 155 99 75
8 558 211 135 104
9 743 277 177 139

10 963 354 226 180
15 3042 961 677 517
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given by

M = Aii "diagonal", (3.12)
"~d~f

Mii = 1j 1Aij "row-sum", (3.13)
j=O

where ndof = rank(A); the diagonal (3.12) is sometimes called a point Jacobi
preconditioner. Both are direct estimates of the spectrum of A, and have the
advantage of minimal storage and work. They can be quite effective for diag-
onally dominant systems such as the viscous correction step of the splitting
scheme described in § 5. The third preconditioner is a block-diagonal matrix:

JAij I if i <_ nbof, j = i

Mij i 0 if i 5 nbof, j : i (3.14)
Aij otherwise

where nbof is the number of mortar nodes in the mesh. The structure of
this matrix assumes that A is arranged in the static condensation format
described in Sect. 3.6. Applying this preconditioner amounts to storing and
inverting the isolated blocks of A associated with the degrees of freedom on
the interior of each element, while applying a simple diagonal matrix to the
mortar nodes.

The following test examines the iterative solution to a Helmholtz equa-
tion for the two extreme cases A2 = 1 and A2 

- 10 000. Convergence is
measured with respect to the solution u(x, y) = sin irx sin iry. The mesh has
K = 10 elements generated by recursively subdividing a square domain,
with N = 15 in each element. Figures 3.7 and 3.8 show the convergence
history for the weakly and strongly diagonally dominant systems. The dif-
ference in convergence rates is explained in part by the condition numbers
of M- 1A, given in Tab. 3.1 and Tab. 3.2. In spite of yielding a lower rA,

the row-sum preconditioner converges slower and therefore offers no partic-
ular advantage over the simpler diagonal preconditioner. The block-diagonal
matrix performs significantly better than the other two, effectively doubling
the convergence rate in both cases. This preconditioner is fully parallelizable,
and offers the most promise in distributed computing environments where
the cost per iteration can include significant time performing interprocessor
communication; its main drawbacks are the higher operation count and stor-
age requirement. The methods described in the next section for implementing
fully direct solvers can also be used to reduce the storage requirement for the
block-diagonal preconditioner.

We conclude this section by giving the memory requirements and com-
putational complexity for a preconditioned conjugate gradient (PCG) solver.
Since the elemental Helmholtz operator can be evaluated using only the one-
dimensional Lagrangian derivative matrix, the required memory is simply
storage for the nodal values and geometric factors:

S1 = s1 KN 2 . (3.15)
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Fig. 3.8. Conjugate gradient iteration convergence history for a Helmholtz equation
with A2 = 10 000: =none, A diagonal, V - row-sum, and El = block-diagonal

preconditioner.

Table 3.2. Condition numbers of M-'A for a Helmholtz equation with A 2 =10 000.

N None Diagonal Row-Sum Block-Diagonal
5 325 18.1 17.9 7.37
6 283 20.1 19.6 8.20
7 273 22.1 21.4 8.71
8 247 23.4 22.4 9.44
9 237 25.1 23.7 10.43

10 229 27.1 25.2 11.82
15 243 44.3 36.1 24.40
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As mentioned above, the dominant numerical operations are vector-vector
and matrix-vector products, although derivative calculations are folded into
a more efficient matrix-matrix multiplication. The operation count for the
entire solver is

Ci = X [ciKN 3 + c2 KN 2 + c3 KN], (3.16)

where JY cc v/AN is the number of iterations required to reach a given
error level c. Our numerical results (Tables 3.1 and 3.2) show that with these
preconditioners JP is still proportional to KN3 , but the constant is reduced.
The block matrix operations required to compute the elemental inner prod-
ucts provide good data locality and can be coded efficiently on both vector
processors and RISC microprocessors.

Static condensation The static condensation algorithm is a method for
reducing the complexity of the stiffness matrices arising in finite element
and spectral element methods. Static condensation is particularly attractive
for unstructured spectral element methods because of the natural division
of equations into those for boundaries (mortars) and element interiors. To
apply this method to the discrete Helmholtz equation, we begin by writing
partitioning the stiffness matrix into boundary and interior points:

Al 12k rU1 ]1k k
A [Fbl (3.17)
A 2 1 A 2 2 ] Fiu]

where All is the boundary matrix, A12 = [A2 1 ]T is the coupling matrix,
and A 2 2 is the interior matrix. This system can be factored into one for the
boundary (mortar) nodes and one for the interior nodes, so that on 0 k:

[All - A21A- 1 A12] ub = Fb - [A21A•1]Fi, (3.18a)

A 22 ui = Fj - A2 1ub. (3.18b)

During a pre-processing phase, the global boundary matrix is assembled by
summing the elemental matrices,

K

All = Z'[All - A21A-1A 12], (3.19)
k=1

and prepared for the solution phase by computing its LU factorization. Equa-
tion (3.19) may also be recognized as the Schur complement of A22 in A. As
part of this phase we also compute and store for each element the inverse of
the interior matrix [A-] and its product with the coupling matrix [A21A§].
The system is solved by setting up the modified right-hand side of the global
boundary equations, solving the boundary equations using back-substitution,
and then computing the solution on the interior of each element using direct
matrix multiplication. Because the coupling between elements is only C',
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Fig. 3.9. Static condensation form of the spectral element stiffness matrix. The
vector 0 = Ub represents the boundary (mortar) solution, while ui represents the
interior solution.

the element interiors are independent of each other and on a multiprocessor
system this final stage can be solved concurrently.

Figure 3.9 illustrates the structure of a typical spectral element stiffness
matrix factored using this approach. To reduce computational time and mem-
ory requirements for the boundary phase of the direct solver, we wish to find
an optimal form of the discrete system corresponding to a minimum band-
width for the matrix All. This is complicated by the irregular connectivity
generated by the using of nonconforming elements. One approach to band-
width optimization is to think of the problem in terms of finding an optimal
path through the mesh that visits "nearest neighbors." During each of the K
stages of the optimization, an estimate is made of the new bandwidth that
results from adding one of the unnumbered elements to the current path.
The element corresponding to the largest increase is chosen for numbering,
resulting in what is essentially a Greedy algorithm. This basic concept is illus-
trated in Fig. 3.10. The reduction in bandwidth translates to direct savings
in memory and quadratic savings in computational cost. Note that standard
methods of bandwidth reduction used for finite elements, e.g. the Reverse
Cuthill-McKee algorithm, can also be used, although they only need be ap-
plied to the boundary system.

The search for an optimal numbering system can be accomplished during
preprocessing, so the extra work has no impact on the simulation cost and
can result in significant savings. Table 3.3 shows the results of bandwidth
optimization for each of the computational domains pictured in Fig. 3.11.
For computers where memory is a limitation, this procedure can determine
whether an in-core solution is even possible. Other simple memory optimiza-
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Fig. 3.10. Bandwidth optimization for a spectral element mesh: (a) computational
domain, (b) connectivity graph and (c) an optimal path for numbering the boundary
nodes in the mesh. Line thickness demonstrates the change in global bandwidth with
each step.

Table 3.3. Matrix rank and optimized bandwidth of three complex-geometry do-
mains representative of internal and external flow problems.

Mesh K N rank original optimized savings

riblets 91 9 1484 1483 250 83%

cylinder 114 11 2416 2406 402 83%

half-cylinder 176 7 2177 2156 399 81%
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Fig. 3.11. Nonconforming meshes used to test the bandwidth optimization.

tions include storage of only a single copy of the interior and coupling matrices
for each element with the same geometry, and evaluation of the force vector
F using tensor product summation instead of matrix operations. By carefully
organizing matrix usage, the overall memory requirement scales as

SD = -sK 2 N 2 + s 2 KN 3 + s 3 KN 4 . (3.20)
2

As mentioned in the introduction to this section, the direct solver is advan-
tageous only when the cost of factoring this stiffness matrix can be spread
over a large number of solutions. Therefore, we consider only the cost of a
back-substitution using the factored stiffness matrix, for which the operation
count scales as

CD = cjK 3/ 2 N 2 + c2KN 4 + c3KN. (3.21)

For a well-conditioned, diagonally-dominant system this method usually re-
sults in at least a factor of two savings versus an iterative solver. For a system
that is not diagonally-dominant, like the Navier-Stokes pressure equation, it
can be faster by a full order of magnitude.

3.7 Examples

Advection As a model for the nonlinear term in the Navier-Stokes equa-
tions, we now look at a linear advection equation. It can be written as

T - a Vu =0 onf9, (3.22)
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where u is a scalar and a is a given velocity vector field defined on 9?. For
simplicity we assume a is constant, divergence free, and normalized so that
Jal = 1 pointwise. To complete the statement of the problem we must also
supply boundary and initial conditions for u, but we leave these open for now.
Equation (3.22) represents the transport of u by the velocity field a, and it
plays an important role in many areas of physics. Here we will be concerned
primarily with developing stable time integration schemes to go along with
high-order spatial discretizations.

The weak form of (3.22) is: Find Uh E Sh such that for all wh E Vh

IJwh(it - a. Vuh) d9 = 0, (3.23)

where it = (9uh/at. The discrete form of the elemental system is

Mkilk - DkUk = 0, (3.24)

where the elemental mass and advection matrices are

Mkq = (Op,Oq)S?, D"q = (a-V~p,¢q)S?. (3.25)

We interpret the vector uk as containing either the nodal values of the solu-
tion or the expansion coefficients of the modal basis functions.

Although external boundary conditions are part of the physical statement
of the problem, to form the global system and complete the discretization we
have to choose "internal" boundary conditions for the subdomain interfaces.
One possibility is to use the method of characteristics, which reduces to
simple upwinding for the scalar equation. Alternatively, C0 continuity can
be imposed by forming a weighted average of the flux a • Vu at element
boundaries, using the mass matrix Mk to provide the weights. This procedure
is also stable for smooth solutions, and numerical experiments indicate that
for well-resolved problems there is little difference between the accuracy or
stability of the two methods. The averaging method is much easier to program
since it corresponds to the "direct stiffness summation" described earlier; in
this case the global system matrices are formed as

K K

M = EIMk, D = ZIDk, (3.26)
k=1 k=1

and the solution is ui = M- 1 Du.
Since the GLL nodal basis functions are discretely orthogonal, the asso-

ciated mass matrix is diagonal and the inversion is trivial. The modal basis
is only semi-orthogonal and the corresponding mass matrix is sparse but not
diagonal. Since the modal mass matrix is symmetric and positive-definite, we
can use iterative methods to invert it like preconditioned conjugate gradient
iteration that work well with the discrete Laplacian [21,24].

To propagate the solution u we discretize time and apply a numerical time
integration scheme with some step size At. The central question is whether
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the method and time step we choose result in a stable scheme. For nonlin-
ear equations like Navier-Stokes, explicit methods are generally used for the
convective terms and the stability is determined by a CFL-type condition of
the form

,Ata t I -< const. (3.27)

However, there is no direct analog of the CFL condition for high-order methods
we have to make a heuristic estimate for the value of At that will keep the
scheme stable, and to do this we need to determine the growth rate of the
eigenvalues of the discrete system.

Eigenvalues of the linear advection operator are determined by the non-
trivial solutions (A, u) of

(a. V - A)u = 0. (3.28)

Eigenvalues of the discrete problem are determined by the system

(G - AI) u = 0, (3.29)

where G = M-1 D. This yields the spectrum associated with the spatial
discretization, and for stability the eigenvalues of the related matrix (I+AtG)
must lie within the stability region of the time stepping scheme. To state this
another way, the time step At must balance the largest eigenvalues of G.

First we consider the modal basis on triangular elements, using a peri-
odic domain discretized as shown in Fig. 3.12. We can determine the max-
imum eigenvalue for wavevectors a = (cos 0, sin0) corresponding to various
directions of propagation across the domain. The worst case (0 = 7r/4) corre-
sponds to a wave propagating through the tip of the triangle where the mesh
spacing is the smallest. Figure 3.13 shows the maximum eigenvalue versus
expansion order N, indicating that max(IAI) O(N 2 ). The same result ap-
plies to quadrilateral elements using the nodal basis. Figure 3.14 shows the
maximum eigenvalues for a simple rectangular domain, again demonstrating
O(N 2 ) growth.

From this, we can form the following heuristic stability criteria:

At < const./IaIN 2 , (3.30)

where the constant depends on the particular time stepping method and
the uniformity of the mesh. Generally, this criterion should be checked on
each element in the mesh and the smallest stable value of At chosen for the
integration, possibly adapting with each time step. Although the examples
we showed were for two-dimensional problems, the same criteria apply to one-
and three-dimensional problems as well.

The explanation for the stability limit given by (3.30) is that the poly-
nomial basis clusters the mesh points near the ends of the element, so that
near the element boundaries Ax - N- 2 . This estimate is standard in polyno-
mial spectral methods [34]. On an equispaced grid that might be used with a
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Fig. 3.12. For the periodic domain shown on the left we consider a wave propagat-
ing with velocity a = (cos 0, sin 9). The polar plot on the right shows the maximum
eigenvalue of the discrete advection operator for several wave orientations and dif-
ferent number of modes M - N.
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Fig. 3.13. Growth rate of the maximum eigenvalue with respect to polynomial
order N for the modal basis [75].
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Fig. 3.14. Growth rate of the maximum eigenvalue of the discrete advection oper-
ator G on conforming and nonconforming meshes versus polynomial order N for
the nodal basis.



Adaptive Spectral Element Methods 267

Fourier spectral method or a finite difference discretization, the mesh spacing
is Ax - N- 1 and this limit is less strict:

At < const./IaIN. (3.31)

In order to weaken the limit on At in (3.30) for polynomial spectral methods,
we can redistribute the collocation points to achieve a more even distribution.
Although an arbitrary mapping may lead to unstable approximations, stable
transformations have been developed that can result in a CFL limit for spec-
tral methods quite close to the finite difference method on uniform grids [53].
In practice, a typical polynomial order is N < 20 and the difference between
(3.30) and (3.31) is not a serious disadvantage to the more straightforward
approach.

Diffusion The diffusion of a scalar u with diffusivity v is described by the
equation

au _V 2u = 0. (3.32)

Tt

It represents a type of "averaging" of u that might describe the spreading
of heat, momentum, or vorticity in a fluid. It is an important equation that
shows up in many branches of physics, but we will put it aside for the moment
in favor of another model problem for the approximation of elliptic equations;
at the end of this section we show how the two are related.

The Helmholtz problem is: given r E R. and smooth functions f : 12 -- RT,
g : P9 -+ 7R, and h : rh -" 7R, find u such that

V 2 U -n 2
U"f0 in 2, (3.33)

subject to the boundary conditions

u = g on F9 , (3.34)

n.Vu=h onFh. (3.35)

There are some special cases of equation (3.33): if n is zero it is called Poisson's
equation, and if r, and f are both zero it is called Laplace's equation.

The Galerkin approximation to (3.33) is developed in much the same way
as already shown for the one-dimensional problem in Section 2. We only need
to extend the ideas to two- and three-dimensions. The variational form of our
boundary value problem is: Find u C S such that for all w E V:

a(u, w) = (f, w) + (h, w)rh, (3.36)

where the symmetric, bilinear form a(., .) is defined as

a(u, w) = J (Vu Vw + K2 uw)dQ. (3.37)
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Let $h C S be the space of C' piecewise polynomial interpolants of degree
N that satisfy the essential boundary condition, and Vh C V a similar space
of functions that have value zero on Fg; these are our basis functions Oj(x).
To complete the Galerkin approximation to (3.36), we separate the solution
into uh =--gh + Vh, where gh E Sh is a polynomial approximation to g and
Vh E V•h is the unknown part of uh. Usually, gh will be an initial guess for
uh that satisfies the boundary conditions but not the weak form, so vh is
simply a correction to make it exact. Evaluation of the integral form (3.36)
by numerical quadrature gives the elemental matrices:

Aq k-= a( p, 0q) k , (3.38)

Fk = (f, Op) s? + (h, Op)rh - a(gh, Op)S2., (3.39)

and the discrete Galerkin equation for the kth element as

Ak vk = Fk. (3.40)

To form the global system there is only one choice for the "internal" boundary
conditions, and that is to apply direct stiffness summation to get

K K

A 'ZAk, F = ZEFk. (3.41)
k=1 k=1

The final algebraic system,

Apqvq=Fp, p,q= 1,... ,ndof (3.42)

requires the inversion of a symmetric, positive-definite matrix A whose band-
width is determined by the index set we use to map between the local and
global systems.

Now we return to the problem of integrating the diffusion equation. We
could follow the same approach used for the advection equation, writing the
semi-discrete form as

Mui = vAu. (3.43)

However, the discrete Laplace matrix A P D2 and for stability the time step
would scale like At -.. N-4; this has been demonstrated more rigorously for
both the nodal as well as the modal basis in [40, 75]. For this reason, the diffu-
sion equation is usually integrated with implicit rather than explicit methods.
For example, we can approximate the time derivative with an unconditionally
stable backward Euler approximation:

U n-+1 - U n
-= v2un+l. (3.44)

At
Rearranging this, we get11 u

(V 2 _ )Un+l + -U 2 2 = 0, (3.45)
vA~t VAt

which is immediately recognized as the Helmholtz equation with r, = 11v /'--
and f = un /vAt. After developing appropriate methods for equation (3.33),
we can solve any implicit approximation to the diffusion equation.
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4 Adaptive Mesh Refinement

Thus far we have looked the development of high-order methods that incor-
porate the essential features needed to adaptively refine the discrete model of
a flow during a simulation. We refer to this as dynamic refinement. In spec-
tral or h-p finite element methods refinement takes place by decreasing the
size of the grid elements (h-refinement) or increasing the order of the solution
(p-refinement). As simple as this sounds, the algorithms for driving adaptive
refinement at a "high level" are quite complicated. Adaptive mesh refinement
is often as much of an art as a science: it depends on the experienced selec-
tion of tolerances and refinement criteria that are highly problem-dependent.
The implementation of adaptive methods is equally complex and usually in-
volves the development of irregular, dynamically changing data structures
that reflect the complexity of the discrete models.

The basis functions that we have looked at so far have sufficiently flexibil-
ity to support the necessary flavors of mesh refinement. High-order expansions
on triangular and tetrahedral elements [75] are probably the most straight-
forward because refinement can be implemented without any fundamental
changes in the topology of the mesh. Quadrilateral and hexahedral grids do
require a different topology to be efficient, namely nonconforming element
boundaries between regions with different spatial resolution. Several choices
for high-order expansions on quadrilateral grids have appeared in the re-
cent literature, including Chebyshev polynomials combined with a multipole
expansion for the Poisson problem [35], high-order B-spline expansions on
locally refined grids [72], and staggered-grid Chebyshev spectral collocation
methods for simulating compressible fluid flows [51,52]. These methods share
a common thread in that the grids used to discretize space look similar, but
they differ in both the way an approximate solution is represented and how
nonconforming elements of the mesh are pieced together. All of these tech-
niques may be classified as spectral element methods because of the general
combination of domain decomposition and high-order polynomial expansions.

In this section we look at the implementation of a high-order adaptive code
based on the nonconforming spectral element method developed in Sect. 3. In
practice this method is used with high-order polynomials (p P 4 to 16) and
a mesh of elements that is generated adaptively by h-refinement. We will not
attempt to refine both the elements and the basis functions simultaneously
as the author's experience indicates that uniformly high p and adaptive mesh
refinement leads to an efficient solution for a wide variety of problems.

The formulation based on mortar elements [14] allows completely arbi-
trary assembly of nonconforming elements. However, our goal is to develop
automatic procedures for generating an appropriate mesh and this calls for
some compromises. To simplify the encoding of the mesh we will require
the refinement to propagate down a quadtree (two-dimensional geometries)
or octtree (three-dimensional geometries). A basic description of the mesh
generation procedure is provided in Sect. 4.2. This is found to be a suitable
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restriction for problems with smooth solutions and leads to a significant re-
duction in the complexity of the data structure needed to represent the many
levels in the refined grid. For complex geometries the mesh may incorporate
multiple trees at the coarse level.

To give a more specific introduction to the goals of developing an adap-
tive spectral element method, Fig. 4.15 shows a sample calculation for the
impulsively started flow past a bluff plate. In this simulation the solution field
is generated by integrating the incompressible Navier-Stokes equations from
an initial state of zero motion. The characteristic scales in the problem are
the free-stream speed'uc, the plate diameter d, and the kinematic viscosity
of the fluid v. The Reynolds number, defined as Re =_ ucod/v, is set to the
value Re = 1000. The lower part of the figure shows the global domain used
to represent the flow around the plate. A symmetry condition is imposed
along the centerline so that only one half of the flow field needs to be com-
puted. The upper part of the figure is an enlargement of the near wake region.
It shows both the vorticity of the developing flow at an early time and the
adaptively generated mesh. Each element is an 8 x 8 point subdomain (p = 7)
of the global solution. A large number of separate 'trees' are needed at the
coarse level to correctly model the beveled geometry of the finite-thickness
plate. The initial stage of mesh generation is done by hand to provide the
correct starting geometry. Once the problem is handed to the flow solver the
additional adaptivity in the mesh is based on a maximum allowable approxi-
mation error in the vorticity field. Because the algorithms for time integration
in problems like the one illustrated in Fig. 4.15 are generally semi-implicit,
the computational issues that arise are somewhat different when compared to
other methods that incorporate adaptive meshes. We are interested primar-
ily in studying incompressible flows governed by the Navier-Stokes and Euler
equations. Because of the elliptic nature of the governing equations (due in
part to the incompressibility constraint), local time-stepping is not usually
an option. Therefore, solving the elliptic boundary-value problems that arise
in these systems is a particular challenge. Even for two-dimensional flows
the resolution needed to maintain sufficiently high accuracy can lead to very
large systems of equations, and computational efficiency is an important is-
sue. In the past this meant algorithms that could be vectorized, while today
it means algorithms that can be parallelized. There is a close relationship
between spectral elements and finite elements, so when it comes to parallel
computing many of the same problems (e.g. load balancing) arise, and similar
solutions apply. Section 4.4 addresses the implementation of this method for
parallel computers with a programming model based on a weakly coherent
shared memory which is synchronized via message passing.

Just as important as overall computational performance are the algo-
rithms used for driving adaptive refinement. Ideally such an algorithm would
take as input an error estimate and produce as output a new discrete model
or mesh that reduces the error. The basic problems are the lack of an er-
ror estimate for nonlinear systems and the unlimited ways in which such
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Fig. 4.15. Simulation of the impulsively started flow past a bluff plate at Re = 1000
using an adaptive spectral element method: (top) close-up of the mesh and vorticity
of the flow a short time after the impulsive start; (bottom) global computational
domain.
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an algorithm could improve the discrete model. The latter problem is ad-
dressed by restricting 'improvements' to propagating refinement down the
tree as described in Sect. 4.2. The former problem is addressed with a pseudo-
heuristic error estimate based on the local polynomial spectrum as described
in Sect. 4.3. Depending on the nonlinearity in the partial differential equa-
tions being solved, parts of the spectrum will give an accurate approximation
to the true solution and parts will be polluted. We estimate the order of mag-
nitude of the local error by examining the decay along the tail of the local
polynomial spectrum. In a general sense, this heuristic flags locations in the
mesh where the polynomial basis fails to provide a good description of the
solution. For simple problems (linear, one-dimensional) this can be formally
related to the true difference between the exact solution and the approxi-
mate solution, i.e. the approximation error. For more interesting problems it
is shown to be a robust guide for driving adaptivity. The heuristic is easy
to compute but is only accurate as an error estimate in computations with
sufficiently high p, meaning that the local polynomial coefficients should de-
cay like lanI - exp(-un) for p = n > 1. This is generally not true near
singular points (e.g. corners) and these locations are automatically flagged
for refinement. The method based on local spectra is compared to simpler
heuristics such as refining in regions with strong gradients and the two are
shown to lead to quite different results. In general the local spectrum works
well and is a good match to the overall computational strategy.

The effectiveness of this approach is first demonstrated in Sect. 4.5 for
scalar problems where the convergence and behavior of the refinement criteria
can be checked carefully. More complicated examples are provided in Sect. 5
with several incompressible flow problem. An attempt is made throughout
to illustrate both the benefits and difficulties of using this kind of high-order
adaptive method, and to point out applications where it may have some
advantage over other numerical methods.

4.1 Framework

In this section we restrict our attention to two-dimensional problems. Most of
the difficulties arise in two dimensions and there are no fundamental barriers
(other than computing power) in extending the method to three dimensions.
To begin, let D be some region of space that has been partitioned into K
subdomains which we denote D(k). We consider two related problems:

1. Given a discretization tolerance e, generate a spatial discretization D =

{D(k) } that allows the tolerance to be met;
2. Given a spatial discretization D = {D(k) }, generate a finite-dimensional

approximation uh z u. The function u may be given explicitly or implic-
itly, i.e. as the solution of a boundary-value problem.

Our approach to problem (1) is to create a hierarchy of grids by forming a
quadtree partition of D. This provides the computational domain for problem
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(2) where we apply a nonconforming spectral element method to approximate
uh

4.2 Mesh generation

The mesh generation problem is somewhat simpler, so we describe that first.
A quadtree is a partition of two-dimensional space into squares. Each square
is a node of the tree. It has up to four, daughters, obtained by bisecting the
square along each dimension. Each node in a quadtree has geometrical proper-
ties (spatial coordinates, size) and topological properties (parents, daughters,
siblings). Geometrical properties of daughter nodes are inherited from par-
ents, and thus the geometrical properties of the entire tree are determined
by the root node.

To represent the topological aspects of the tree we use an idea originally
developed for gravitational N-body problems [70]. Every possible square SW
is assigned a unique integer key. The root of the tree is S(') with key 1. The
daughters of any node are obtained by a left-shift of two bits of the parent's
key, followed by a binary or in the range 00-11 (binary) to distinguish each
sibling. A node's parent is obtained by a two bit right-shift of its own key.
Since the set of keys installed in the tree at any time is obviously much smaller
than the set of all possible keys, a hash table is used for storage and lookup.
From the complete set of nodes in the tree we choose a certain subset D(k) C

S(W) to form the active elements of the computational domain. Figure 4.16
shows a four-level quadtree with thirteen nodes and K = 10 active elements.
Active elements in the figure are shown with a solid outline while inactive
elements are shown with a dashed outline. Inactive elements are retained
so that they are available for coarsening the mesh, if necessary. The only
requirement enforced on the topology of the mesh is that active elements that
share a boundary segment live at most one refinement level apart, limiting
adjacent elements to a two-to-one refinement ratio. This imposes a certain
smoothness on the change in resolution in the mesh that is appropriate for
the class of smooth functions we wish to represent.

4.3 Refinement criteria

The adaptive mesh generation described above and high-order domain de-
composition methods described in §3 are coupled through the refinement
criteria used to drive adaptivity. Here we consider three types of refinement
criteria.

The first is by far the simplest: refine everywhere that solution gradients
are large. We can enforce this idea by requiring

II Vu(k) II-< f 11 uh I1 (4.46)

everywhere in the mesh, where is the L2 norm, 1"1 is the H1 norm,
and c is the discretization tolerance. This is a common refinement criteria in
cases where there is simply no alternative measure of solution errors.
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Fig. 4.16. A four-level quadtree mesh, expanded to show the elements that make up
each level. Each leaf node S(t) has a unique integer key shown in binary. Daughter
keys are generated from a parent's key by a two-bit left shift, followed by a binary or
in the range 00-11. The active elements D(k) that make up the current discretization
are shown with a solid outline.

The second type takes direct advantage of the high-order polynomial ba-
sis. Consider the expansion of a given smooth function u over the domain
D = [-1, 1]2 in terms of Legendre polynomials:

u(x,y) = • j an,m Pn(x)Pm(y). (4.47)

n=O m=O

The expansion coefficients are given by

an,m a 1 J 1P ,lPmIJIdxdy, (4.48)

where the normalization constant is ci (i + 1/2)-1. We have included
the Jacobian IJI to include the effects of element size and other geometric
transformations, e.g. curvilinear boundaries. There is nothing magical about
Legendre polynomials--they are simply a convenient orthogonal basis for
projecting the approximation onto. Since our approximate solution uh • u
is formed essentially by truncating this expansion at some finite order p, we
can form an estimate of the approximation error u - uh II by examining the

tail of the spectrum.
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To do so we first average over polynomials in x and y to produce an
equivalent one-dimensional spectrum:

p--1

dp = lap,pl + E lai,pl + lap,d. (4.49)
i=0

Next we replace the discrete spectrum ap with an approximation to a decaying
exponential:

a(n) =const. x exp(-an). (4.50)

The function d(n) is a least squares best fit to the last four points in the
spectrum ip. Our refinement criteria becomes

S1/2

&(P) 2 + &(n)2 dn <E II u . (4.51)

The only practical complication here is making sure the decay rate a > 0
so that the integral converges. Otherwise, the estimate is ignored and the
element is flagged for immediate refinement. This method is analyzed in [60]
where it is shown to be an effective refinement criteria for driving h-p refine-
ment.

The third refinement criteria is similar. Since the main contribution to (4.51)
comes from the coefficients of order p, we can simply sum along the tail of
the spectrum. For an accurate representation of u we require the spectrum
to satisfy the discretization tolerance:

p- 1

Iap,pl + E lai,pl + Iap,il _5 IIuh II. (4.52)
i=O

This method is somewhat simpler to apply and, as we will see, produces
almost identical results.

To use these polynomial spectrum criteria with our spectral element
method (based on GLL polynomials) we first perform a Legendre transform
of the local solution u(k) -- an,m and then use (4.51) or (4.52) to decide
if the element should be refined. Although we keep p fixed, the error is re-
duced because we approximate u over a smaller region D(k). This basic idea
is illustrated in Fig. 4.17. Here a smooth function f(x, y) has been projected
onto the Legendre polynomials of order p _< 64. For a given order p the true
approximation error would be given by the sum over all coefficients not con-
tained in the box m, n < p. We estimate the magnitude of that error by
simply summing coefficients along the solid lines.

4.4 Implementation notes

We end this section with a few additional notes on implementation. The algo-
rithms described above have been implemented using a combination of C for
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Fig. 4.17. Error estimate based on the local polynomial spectrum: (a) contours of
the function f = 1/(1 + 25r 2); (b) scatter plot showing the polynomial coefficients

lan,.I. An estimate of the basis accuracy for a given polynomial order is formed by
summing lan...I along the solid lines: e = 0.0962 (p = 16); e = 0.000314 (p = 32);
S= 8.25 x 10-7 (p = 48).
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the computational modules and G+ for high-level data types like Element
- D(k) and Field - uh that make up the discretization. The logic and con-
trol structure needed for most of the code are the same as in any algorithm
for finite element methods. The most complex problem is maintaining the
connectivity of the mesh dynamically, and the approach taken here is worth
mentioning. The geometry and topology of the mesh are closely connected.

F/

_ _ _ _/ 7;/

Fig. 4.18. The logical structure of a spectral element mesh can be divided into
three geometric parts: (o) vertices, (-) edges, and (shaded) interiors. Edges and
vertices define the connectivity in the mesh.

Figure 4.18 shows the three geometric elements of the discretization: vertices,
edges, and interiors. Obviously interior points are completely local to an el-
ement and play no role in the global system. All connectivity in the mesh is
through the edges and vertices. Because of the method used to construct the
grid these geometric elements are interlocking. The midpoint of each noncon-
forming edge aligns with the shared vertex of its two adjacent elements. As
discussed below, this feature is used to simplify the procedure for setting up
the mesh topology.

Figure 4.18 shows one other side effect of the mesh generation. Internal
curvilinear boundaries are automatically propagated down the various levels
of the refinement tree because of the isoparametric representation of the
geometry. In the same way that a solution field is projected onto a new
set of elements, the polynomial representation of the geometry can also be
projected to a finer grid. On the other hand, external boundaries like the
B-spline segment shown as the lower boundary in the figure are explicitly
re-evaluated to keep the representation as accurate as possible.

How does one represent the topology of this kind of mesh? One solution
is to use pointers. This immediately runs into the problem of interpreting
pointers to objects on remote processors if the computation is running in
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parallel. Instead we use the concept of a voxel database (VDB) of geometric
positions in the mesh [85]. A VDB may be thought of as register of position-
subscript pairs. To each position stored in the VDB we assign a unique integer
subscript so that data may be associated with points in space by using the
subscript as an index into an array.

The basic idea is illustrated in Fig. 4.19. The number of times a position
is registered is its multiplicity. Data objects that share positions also share
memory by virtue of a common subscript. In essence the VDB provides a
natural map of the mesh geometry onto the computer's memory. This basic
paradigm can be used to implement many types of finite element or finite
volume methods [85].

shared positions,."i..............i....
.' 4*%

prcso 1
prossor 1 local number

3 1 234 522 1112453
23561

/ global number

processor 0

Fig. 4.19. Connectivity and communications axe established by building a voxel
database (VDB) of positions. A VDB maps each position to a unique index or
subscript. It also tracks points shared by multiple processors to provide a loosely
synchronous shared memory. Points that share memory are those at the same geo-
metric position.

To establish the connectivity of a mesh like the one depicted in Fig. 4.18
we build two separate VDBs: one for the vertices and one for the midpoints
of the edges. Every vertex with multiplicity one that. does not lie along an
external boundary is virtual and not part of the true mesh degrees of freedom.
Every edge with multiplicity one that does not lie along an external boundary
is nonconforming. For each nonconforming edge we make a second query to
the VDB using the endpoints. If there is a match then the edge is also virtual
and we store the subscript of the adjacent edge. Otherwise it is simply flagged
as an internal nonconforming boundary segment.

The shared memory represented by a VDB is extended across processor
boundaries by passing around a list of local positions and comparing against
those registered remotely. A communications link is established for each com-
mon position. The shared memory at each point is weakly coherent and must
be synchronized by explicit message passing. For example, elements on sepa-
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rate processors with a common boundary segment share data along an edge.
Each processor may update its edge values independently and then call a
synchronization routine that combines local and remote values to produce a
globally consistent data set. For further details see [85].

There is very little overhead for the adaptive versus non-adaptive data
structure: just one integer (the node key) per element. Likewise, an iterative
solver for sparse systems incurs no performance penalty just because the un-
derlying mesh is adaptive. When approached in the right way the conversion
to a solution adaptive code is almost trivial. To a large degree this is because
of the unstructured nature of the spectral element method we built upon.

4.5 Examples

Next we illustrate the performance of the method with a few simple test
problems. First we consider the solution of the Poisson equation V2 u f f
with the right-hand-side given by

f(x, y) = (400 2r 2 
- 800)e-400r2/2, (4.53)

where r 2 =- x2 + y 2 . The exact solution is given by

u(x, y) = e400r2 /2. (4.54)

We take the computational domain D = [-0.5, 0.5]2 and impose homogeneous
boundary conditions u = 0 along the perimeter OD. This same test case is
studied in [35] to check the performance of a fast multipole method using a
similar type of spatial discretization.

Table 4.4. Solution times and relative errors for solving the Poisson equation on a
uniform grid with order p = 7 elements. Columns (I) and (II) show the estimated
error using the exponential fit and summing the trace of the Legendre polynomial
spectrum, respectively.

No. levels No. points (I) (II) 11 u - u
0 64 0.534
1 256 0.0127 0.0117 0.0113
2 1024 0.000762 0.000735 0.000389
3 4096 2.625 x 10-6 2.575 x 10-6 1.318 x 10-6

4 16384 1.189 x 10-7 1.187 x 10-7 8.212 x 10-8

Since this problem has a well-defined exact solution, we begin by compar-
ing the error estimates and the true error 11 u - uh 11 on a uniformly refined
grid (table 4.4). This table shows that the error estimates are actually quite
sharp, differing from the L2 error by only a small multiplicative factor. Also
note that the spectrum-based estimate are nearly equivalent. This is true in
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general. Because the trace is easier and faster to compute, this is the method
that will be used from this point forward unless noted otherwise.

Adaptive mesh generation based on the different refinement criteria is
illustrated in Fig. 4.20. In this case both methods produce roughly equivalent
discretizations. The grid is refined in approximately the same location and to
the same depth for a given discretization tolerance. Both methods generate a
six-level quadtree with roughly the same number of active elements (K ; 300)
using a uniform basis of order p = 7.

0.59

I I I H- W-H+H0.0

- - 0 .5 I . . . . . . . . .I I
II Vf I -0.5 0.0 0.5 1 bI

Fig. 4.20. Adaptive mesh generation: (center) contours of the function f(x, y) in-
side the computational domain; (left) adaption based on function gradients with a
tolerance of e = 0.0863; (right) adaption based on the local Legendre polynomial
spectrum with a tolerance of e = 9.01 x 10-7.

For the second example we consider the solution of the Poisson equation

V 2u + 1 = 0, (4.55)

on the same domain D with homogeneous boundary conditions u = 0 on OD.
The structure of the solution is quite different, as shown in Fig. 4.21. There
is a weak singularity in the corners of the domain where the solution must
simultaneously match the curvature and the boundary conditions. However,
the solution gradients are largest along the edges of the domain where the
structure of u is rather simple. In this case our two refinement criteria lead to
nearly complementary grids. Clearly the local polynomial spectrum indicates
the correct location for refinement while the magnitude of solution gradients
can be misleading. In this case mesh refinement based on solution gradients
completely misses the location (e.g. the corners) where the errors are largest.

4.6 Summary

We have outlined the basic features and implementation of an adaptive spec-
tral element method. Perhaps the most interesting part of the method is the
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Fig. 4.21. Adaptive solution of the Poisson equation with corner singularities: (cen-
ter) contours of the solution computed on a uniform fine grid; (left) adaption based
on the solution gradients with a tolerance of e = 0.3; (right) adaption based on the
local Legendre polynomial spectrum with a tolerance of C = 10-8.

'built-in' refinement criteria provided by the local polynomial spectrum. This
provides a heuristic error estimate that is independent of the system being
solved. The local spectral properties were shown to be a useful and relatively
robust criteria for both simple linear problems (the Poisson equation). In the
following section we will look at more complex nonlinear problems.

One area of potentially great improvement is in the algorithms used to
implement the sparse matrix solver. For example, recent work on fast multi-
pole methods for spectral elements shows great promise for solving Poisson
and Helmholtz equations [35]. There are a host of other possibilities that
take better advantage of the multilayer structure of the grid than the more
straightforward CG iterations considered here. Also note that direct solvers
are still feasible in adaptive calculations as long as a relatively large number
of elliptic solves take place between adaption steps.

5 Fluid Dynamics

Advances in both computer technology and numerical methods have opened
new possibilities for the study of fluid dynamics through large-scale simula-
tions. Building on the spatial discretizations presented so far, we now turn
to the solution of the Navier-Stokes equations for unsteady two and three-
dimensional problems and show that high-order splitting methods reduce the
computational burden to solving a series of Helmholtz problems.
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5.1 Incompressible flows

We consider here Newtonian fluids with constant density p and kinematic
viscosity v, the motion of which is governed by the the incompressible Navier-
Stokes equations:

V-u=O inS2, (5.1a)

=tu N(u) - 1Vp + 1 V2u in 2, (5.1b)
P Re

where u = (u1, u2 , u3 ) is the velocity field, p is the static pressure, Re - UL/v
is the Reynolds number, and S2 is the computational domain. These equations
are written in non-dimensional form where velocities are scaled by U and
lengths by L. Without loss of generality we take the numerical value of p = 1
since this simply sets the scale for p. N(u) represents the nonlinear advection
term:

N(u) =-(u. V)u, (5.2a)

1- [(u. V)u + V . (uu)], (5.2b)

= -2V(u• u) - u x V x u. (5.2c)

We refer to these as the convective form, skew-symmetric form, and rotational
form, respectively. These three forms for N(u) are mathematically equivalent
but behave differently when implemented for a discrete system. As shown by
Zang [91], the skew-symmetric form is the most robust; this form is used in
all calculations unless noted otherwise.

The Navier-Stokes equations are coupled through the incompressibility
constraint V • u = 0 and the nonlinear term N(u). However, the biggest
challenge for time-integration comes from the linear term:

1 2
L(u) =-V i. (5.3)

Re

This term is responsible for the fastest time scales in the system and thus
poses the most severe constraint on the maximum allowable time step for
numerical integration of the fluid equations. Problems associated with the
stiffness of the linear operator are handled by treating this term implicitly,
while the nonlinear term can be integrated with an easier explicit method.

Semi-discrete formulation To solve the Navier-Stokes equations, (5.1b)
is integrated over a single time step to obtain:

ft+At1

u(t + At) = u(t) + [N(u) - 1Vp + L(u)] dt. (5.4)
Jt P
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Next we introduce a discrete set of times tn =-- nAt where the solution is to
be evaluated, and define un = u(x, tn) as the semi-discrete approximation
to the velocity (discrete in time, continuous in space). For reasons that will
be explained in a moment, the pressure integral is replaced with:

- 1 j lVpdt. (5.5)

Next we introduce appropriate integration schemes for the linear and nonlin-
ear terms. The simplest implicit/explicit scheme would be first-order Euler
time integration:

f L(u) dt • At L(u'+l); (5.6)

/ N(u) dt z AtN(un). (5.7)

Combining (5.5)-(5.7) we get a semi-discrete approximation to the momen-
tum equation:

Un+l = n u+ [N(un) - VP + L(u'n+l)] At. (5.8)

This system of equations can be solved by further splitting (5.8) into three
substeps as follows:

u(1) - un = At N(un), (5.9a)

u(2) - u(1) = _,At Vp, (5.9b)

U -n1 _ U(2) = At L(un+,). (5.9c)

Here u(1) and u(2) are intermediate velocity fields that progressively incorpo-
rate the nonlinear terms and the incompressibility constraint. The motivation
for the splitting is to decouple the pressure term from the advection and dif-
fusion terms.

The classical splitting scheme proceeds by introducing two assumptions:
that u02) satisfies the divergence free condition (V . u( 2) = 0), and that u(2)

satisfies the correct Dirichlet boundary conditions in the direction normal to
the boundary (n _ u(2) = n- unf). Incorporating these assumptions, we can
derive a separately solvable elliptic problem for the pressure in the form:

Vp=1-( .u(1)). (5.10)

The field P becomes a dynamic variable that couples the divergence-free con-
dition and the momentum equation. The correct Neumann boundary condi-
tions for P come from (5.8), which can be simplified to the form:

p - [N(un)-1VXVXUn] (5.11)
On Re
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This boundary condition prevents the propagation and accumulation of time
differencing errors and ensures that P satisfies the important pressure com-
patibility condition [48]. Note that the linear term in (5.11) is derived from
L(un) rather than L(un+l). This type of first-order extrapolation is neces-
sary to keep the pressure equation decoupled from the other substeps. The
order of the extrapolation should be consistent with the overall time accuracy.

Higher-order schemes It is relatively easy to make the integration scheme
outlined above more accurate in time, i.e. to increase the time accuracy to
O(AtJ). The basic idea is to use higher-order multi-step schemes for the time
integration. Time derivatives can be approximated with a backward difference
of the form:

J-1

atu ý At (-Youn~ 1 - aq U (5.12)
q=0

where -yo aq for consistency. The nonlinear term can be integrated using
an Adams-Bashforth method:

J-1

N(u) dt ; At E /q N(un-q), (5.13)

where E fOq = 1. The pressure boundary conditions should be integrated with
a scheme of the same order to ensure consistent time accuracy:

J-1 1

n= n- E q [N(un-) - x V x u-]. (5.14)
an q=O Re

Combining these various integration schemes produces the following semi-
discrete equations:

J-1 J-1

u()- E aqun-q = At E J3q N(un-q), (5.15a)
q=O q=O

u(2) - u(1) = -At Vf5 (5.15b)

,Y0un+1 - U(2) = AtL(un+1 ). (5.15c)

This method would typically be used with J = 2 or 3 and an integration
rule like one of the schemes given in table 5.1. Overall, (15) provides an very
efficient way to integrate the Navier-Stokes equations.

Two-dimensional simulations A single time step using the skew-symmetric
form of the nonlinear terms requires ten spatial derivatives plus the solution
to one Poisson equation for the pressure and two Helmholtz equations for
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Table 5.1. Integration coefficients for multi-step schemes of order J: (top) classic
Adams-Bashforth schemes; (bottom) stiffly-stable schemes with coefficients derived
for a model advection-diffusion equation [48].

J 'yo ao Ol a2 )30 )31 P2

1 1 1 1

2 1 1 3/2 -1/2

3 1 1 23/12 -4/3 5/12

1 1 1 1

2 3/2 2-1/2 2 -1

3 11/16 3 -3/2 1/3 5/2 -2 1/2

the diffusion in each direction. Most of the computational work is associ-
ated with solving these linear systems; collocation is used to integrate the
nonlinear terms and makes only a minor contribution. The techniques out-
lined in Sect. 3 can be applied directly to the solution of the various elliptic
subproblems.

Note that the pressure is indeterminant to within a constant in a two-
dimenional calculation with all Neumann boundary conditions. This is be-
cause for any field p(x, y) that satisfies (5.10), the field p(x, y) + c is also
a solution, for any constant c. This ambiguity can be removed in a direct
method by setting exactly one pressure degree-of-freedom to zero, typically
the last element in the array of pressure boundary unknowns. For iterative
methods it is sufficient to set the mean of the initial residual to zero.

Three-dimensional simulations We can simulate three-dimensional flows
in one of several ways. If the geometry is fully three-dimensional we have to
use hexahedral or tetrahedral spectral elements [73]. If the problem has one
of several symmetries - axisymmetric, spherically symmetric, or periodic in
one direction - then Fourier expansion in one direction becomes a much
more efficient way to represent the flow.

Consider the case of a flow that is periodic in the z-direction and satisfies
the symmetry

u(x,y,z,t) = u(z,y,z + L,t).

Under these conditions u can be projected exactly onto a set of two-dimensional
Fourier modes fiq as

L

fi(Xy, t) = L 1 / u(x, y, z, t)e-i(27r/L)qz dz.
0 {
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Likewise, the Fourier modes fiq given the expansion of the velocity field in a
Fourier series:

00

q=oo
u(x, y, z,t) = E Uq(X' yt)e~i(2ir/L)qz"

Substituting the Fourier expansion of the velocity field into the Navier-Stokes
equations, we obtain a coupled set of equations for the Fourier modes. To
simplify the notation, we define the scaled wavenumber fq - (27r/L)q and
the q-dependent operators

¢2 _C2 9

The evolution equation for the Fourier modes can then be written as

V. iq = 0 in f?, (5.16a)

ptfiq = Nq(U) - IVi~q + 1 uq in (2. (5.16b)

The nonlinear advection term provides the coupling between all modes. We
can denote this term by

L

Nq(u) = L- 1 j N(u)e-i( 2
7/L)qz dz. (5.16c)

Dissipation becomes important at wavenumbers PD - Re1/2; at wavenumbers
0 > OD the equations are dominated by viscosity. These high-wavenumber
modes contribute little to the dynamics of the flow at large scales because
their energy is rapidly dissipated by viscosity. For an adequate description of
the dynamics in a system with a given spanwise dimension L we only need
a finite set of M Fourier modes to cover the range of scales from # = 0 (the
mean flow) to OD = (27r/L)M . Re"/ 2, or M = O(LRel/ 2). We take as our
final representation of the velocity field the truncated expansion

M

U(x,y,z,t) = E fiq(Xyt)ei(2'/L)qz"
q=-M

Writing the equations in Fourier space reduces the problem for a three-
dimensional flow to a sequence of coupled two-dimensional problems. The
only coupling is through the nonlinear term which is again evaluated explic-
itly. Computationally it is more convenient to follow the evolution of the two-
dimensional Fourier modes fiq(x,y,t) than the full three-dimensional field
u(x, t). Because u is real, the Fourier modes satisfy the symmetry fiq = fi.

Therefore, only half of the spectrum (q > 0) is needed. In addition to con-
venience, the Fourier representation of the velocity field has other intrinsic
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advantages. It provides a direct way of linking particular modes of the sys-
tem with specific three-dimensional spatial patterns. Linear stability theory
can predict which modes will have the strongest interaction with the two-
dimensional flow to produce these patterns. The time-averaged amplitude of
the Fourier modes gives a direct indication of how well-resolved the calcu-
lations are. And finally, the time-dependent amplitude of the Fourier modes
provides a convenient way of explaining the transfer of energy to different
scales in a three-dimensional flow.

The comments in the previous section about solving the pressure equation
apply only to the mean flow (13 = 0) of a periodic three-dimensional flow. All
other wave numbers determine fluctuations about the mean and are uniquely
defined. The same techniques described for solving the two-dimensional prob-
lem can be applied to the pressure system for 3 = 0.

5.2 Examples

Next we present a variety of examples that illustrate the versatility of spectral
element methods for two and three-dimensional flow problems. For most cases
we show results using both quadrilateral and triangular spectral elements. We
also examine problems where nonconforming elements and adaptive mesh
refinement are used to automatically generate an appropriate discretization
that achieves a prescribed error tolerance.

Wannier flow The first example is an exact solution to the Stokes equations
(N(u) - 0, Re = 1), but for a relatively complicated flow with curvilinear
boundaries. It is an exact solution derived by Wannier [82] for the creeping
flow past a rotating circular cylinder next to a moving wall. The solution
depends only on the cylinder radius, r, its rate of rotation, w, the distance
from the center of the cylinder to the moving wall, d, and the velocity of the
wall, U. For convenience we define s2 = d2 - r 2 and F = (d+ s)/(d- s), and
the constants:

ao = U/In F,
a, = -d(ao + lr 2 Wls),
a 2 = (d + s)(ao +
a 3 = (d - s)(ao + r 2 w/s).

Next we define the following functions that depend on position (X, y):

YI (y) = y + d,

Y2 (y) = 2Y 1 (y),
Kl(x,y) = x2 + (s + Y1(y)) 2 ,
K 2(x,y) = x2 + (s -Y (y)) 2 .
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In terms of these quantities, the solution can be written as:

ul(x,y) = U - 2(al + aoYg) [ Ks + K ± J

-a 0 ln(Ki/K 2)

a2 [+ (S+ Y1 ) 2Y 2 ]

K2sY+ K2 J'

2x
u2 (x, y) KIK 2 (al + aoYl)(K2 - K1)

xa 2 (s + YI)Y 2  xa3(s - Y1)Y 2S~K2

This problem was solved using nonconforming quadrilaterals and trian-
gular spectral elements. Figure 5.1 shows the corresponding computational
domains along with streamlines of the steady-state solution. Since the ex-
act solution is known, Dirichlet boundary conditions for the velocity can
be applied along the perimeter of the domain. The nonconforming mesh of
quadrilateral elements incorporates some local refinement near the cylinder
and uses a total of K = 40 elements. The triangular mesh uses K = 65 ele-
ments to discretize the same region of space but with higher resolution near
the cylinder.

We note a few items about the calculation using triangular elements.
Since this mesh uses curvilinear elements around the cylinder, it serves to test
the convergence of the method on distorted grids. All elements are mapped
to the standard triangle when performing integration. Because of their de-
formed nature, the Jacobian is not constant within a curvilinear element. A
non-constant Jacobian destroys the sparsity of the interior-interior coupling
submatrices in the global mass matrix and global stiffness matrix. Neverthe-
less, since there are only a few of these elements performance is not noticeably
affected [75].

Figure 5.2 shows the results from a p-convergence study for this flow.
The figure shows the H 1 error in the computed velocity field. As expected
for a smooth solution, the simulations converge exponentially to the exact
velocity field. Although the quadrilateral and triangular elements converge
at approximately the same rate, the actual value of the error for a given
order p depends on how elements are distributed in the domain. This results
in parallel convergence curves with different prefactors that depend on the
specifics of the grid.

Because the exact solution is known, this problem also makes a good test
case for adaptive mesh refinement. Figure 5.3 shows a convergence plot for
the Wannier flow solved by adaptively refining an initial coarse grid. This
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Fig. 5.1. Wannier flow, an exact solution for creeping flow past a rotating circular
cylinder near a moving wall: (a) streamlines of the exact solution corresponding to
the parameters r = 0.25, d = 0.5, U = 1, and w = 2; computational domain dis-
cretized using (b) K = 40 quadrilateral spectral elements and (c) K = 65 triangular
spectral elements.
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Fig. 5.2. Convergence of the velocity field in the H1 norm to the exact solution for
Wannier flow shown in the previous figure: (0) quadrilateral and (A) triangular
spectral elements. Note that errors have been normalized by the domain size.

I 0 I I I- -
I B • H

10-1 *

10•2

A10-3
, 10-4

• 10-0

0 1 2 3 4 5
mesh index

Fig. 5.3. Adaptive solution to the Wannier flow problem: (e), computed L2 error
in the velocity field; (-), 10 x e where e is the error estimated from the trace of
the polynomial spectrum; the dashed line is the prescribed error tolerance. Meshes
Mo and M 5 are shown above the plot.



Adaptive Spectral Element Methods 291

results in convergence via adaptive h-refinements of the initial mesh. We
use the trace of the polynomial spectrum to drive adaptivity, and apply the
refinement criteria to each component of the velocity vector.

The calculations are performed as follows. We start by solving the Stokes
equations on the initial coarse mesh, designated M0 . This mesh is then refined
to meet a prescribed value of the refinement parameter e. A new solution is
computed and the actual L2 error is compared to the new estimate. The
process is iterated by lowering E by a factor of 10 each time. In pseudo-code
the procedure looks like this:

do n = 1, 5
set eps = 1/10$n # set tolerance
refine if trace(ul) > $eps # update grid
refine if trace(u2) > $eps #
solve(ul,u2) # update solution

end

This produces a sequence of grids M 1 , M 2 , ... , M5. Only the first and last
grids are shown in Fig. 5.3.

There are two curves related to the error estimates shown in Fig. 5.3.
Look at the results for grid M 2. The dashed line indicates the precribed error
tolerance used to generate that grid. This is an a priori error estimate in
the sense that the adaptive procedure refines grid M1 --+ M2 until the new
tolerance has been met, but before a new solution is available. The solid line
indicates the estimated error on the new grid after the solution has been
regenerated. This is an a posteriori estimate. Finally, the symbol indicates
the true L 2 error on the new grid. The error estimate is sharp in the sense
that it follows the true error to within a constant factor, although for this
problem that constant is • 10.

Kovasznay flow In 1948, Kovasznay solved the problem of steady, laminar
flow behind a two-dimensional grid [54]. This exact solution to the Navier-
Stokes equations is given by:

ul(x,y) = 1 - eAX cos 27ry,

u 2 (x,y) = A •• sin2iry,
27r

p(x,y) = 1(1- eX) +c,
2

where A = Re/2 - (Re2 /4 + 49) A and c is an arbitrary constant. We we look
at the solution for Re = 40.

The Kovasznay flow pattern is similar to the low-speed flow of a vis-
cous fluid past an array of cylinders. Figure 5.4 shows streamlines of the
steady solution and computational domains using quadrilateral and triangu-
lar spectral elements. The exact solution was used to apply Dirichlet bound-
ary conditions, and the Navier-Stokes equations were integrated to obtain
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a steady-state solution on the interior of the domain. Figure 5.5 shows the
results of a p-convergence study for this problem. Again we observe exponen-
tial convergence of the solution in both methods, and at roughly the same
rate.

1.0

0.5

-0,5 ; _1=• = :c ::=: (a) (b)
-0.5 0.0 0.5 1 a0

Fig. 5.4. Kovasznay flow, an exact solution to the Navier-Stokes equations: (a)
streamlines of the exact solution corresponding to Re = 40; computational do-
main discretized using (b) K = 8 quadrilateral spectral elements and (c) K = 16
triangular spectral elements.

Next we consider solving this problem using adaptive mesh refinement
and nonconforming elements. Figure 5.6 shows the results from the same
type of convergence study that was presented in Sect. 5.2 for Wannier flow.
In this problem the error estimate differs from the true L2 error by about
a factor of 4. Note that the initial grid is so coarse that the estimate is
completely unreliable - the estimated error on the refined mesh M1 is higher!
This emphasizes that fact that the adaptive procedure should really only be
applied to a solution that is well-resolved in the sense that Iluhil ,,• Ilull. That
assumption is, after all, at the heart of the error estimate. Also note that the
refinement M1 -+ M 2 produces such a large drop in the error that the next
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Fig. 5.5. Convergence of the velocity field in the H1 norm to the exact solution
for Kovasznay flow as shown in the previous figure: (0) quadrilateral and (A)
triangular spectral elements.

iteration M2 -+ M3 does not change it at all. 3 Although this problem is
relatively simple, it gives some additional confidence that the error estimate
provides a meaningful measure of the approximation error even for a fully
nonlinear problem.

Lid-driven cavity The first two examples provide good benchmarks be-
cause they are exact solutions to the fluid equations. However, the solutions
are really too simple to warrant the use of adaptive mesh refinement. The
next example clearly does benefit from the use of an automatic procedure to
construct appropriate grids.

Consider the case of a lid-driven cavity (LDC). The flow within the cavity
is driven from above by a lid moving with unit velocity, and the problem is
non-dimensionalized so that the cavity has unit length on each side. Boundary
conditions for the velocity are (ul, u2) = (1, 0) along the top boundary and
(ul, u2) = (0, 0) on the three remaining sides. Note that the velocity boundary
conditions are discontinuous at the corners, making this an extremely difficult
problem to resolve with a high-order method. It is one of the situations where
p-refinement degenerates, ruling that out as a practical way to resolve the
flow.

3 If you look at Fig. 5.6 and think the actual L 2 error increases from M2 to M3,
then you are seeing an optical illusion caused by the fact that the error estimate
decreases slightly.
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Fig. 5.6. Adaptive solution to the Kovasznay flow problem: (e), computed L 2 error
in the velocity field; (-), 4 x c where e is the error estimated from the trace of the
polynomial spectrum; the dashed line is the prescribed error tolerance. Meshes M0 ,
M 4 , and M 5 are shown above the plot.
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We will look at two types of parameter variation for this problem: nu-
merical convergence as c -+ 0 for fixed Re = 1000, and evolution of the grid
with increasing Re for fixed e = 10-6. All of these calculations will use a
fixed polynomial order of p = 7 and apply the trace of the polynomial spec-
trum as a refinement criteria. Note that temporal refinement is necessary as
well - a suitable time step is chosen for each new domain so that the time
integration remains stable. The time step in these calculations varies from
At = 0.01 to At = 0.000625. Because we are using an implicit method to
solve the Navier-Stokes equations, local time stepping is not an option.

First consider the problem of computing the steady-state LDC flow at a
fixed value of Re = 1000. Figure 5.7 shows the adaptively generated grid and
corresponding vorticity field for different values of the refinement parameter
E. The initial coarse grid for this calculation was simply the unit square. Sev-
eral intermediate grids were generated prior to the one shown in Fig. 5.7(a).
The refinement procedure proceeds in a similar manner to that described
previously: the solution is integrated for a specified amount of time, then
the refinement criteria is applied to the components of the velocity field to
produce a new grid. The old solution is projected onto the new grid and the
next iteration begins.

The solution shown in Fig. 5.7(a) with c = 10-3 is quite coarse and clearly
a poor approximation to anything resembling the vorticity of a real flow. The
next adaption (E = 10-') refines the entire domain one level and attempts
to resolve the shear layers along the upper and right walls. At C = 10-5 it
picks out high vorticity regions along the left and bottom walls and contin-
ues to refine the shear layers that emerge from each upper corner. Finally,
at c = 10-6 the interior of the cavity is refined uniformly and a fine grid is
generated near each corner and in the direction just downstream. This pro-
cess could be continued to achieve an arbitrarily high degree of accuracy but
the solution in Fig. 5.7(d) is certainly a good approximation to the flow at
this Reynolds number. Keep in mind that the vorticity is a derived quan-
tity obtained by differentiating the velocity field. It is not even continuous
in this approximation, although continuity of higher derivatives is obtained
as part of the convergence process. For example, compare Figs. 5. 7 (a) and
5.7(d). It is comforting that the refinement criteria applied to the velocity
field automatically picks out the physically important features of the flow.

We can use the same ideas to study how the flow evolves with changes
in Re. At a given value of Re we use the adaptive procedure to generate
a steady-state solution with a prescribed tolerance e. That solution serves
as an initial guess for the next value of Re. The adaptive procedure keeps
the solution well-resolved as the flow develops more complex structure with
increasing Re.

Figure 5.8 shows the evolution of the flow and adaptively generated grids
for this kind of parameter study. At low Reynolds number the cavity con-
tains a diffuse vorticity field. Vorticity becomes more concentrated along the
walls with increasing Reynolds number. The adaptive procedure tracks these
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Fig. 5.7. Adaptive calculation for the LDC flow at Re = 1000 showing the grid

and vorticity field at different values of the refinement parameter: (a) e = 10- 3; (b)

S= 10- 4 ; (c) e = 10- 5 ; (d) e = 10- 6. All calculations used a fixed polynomial order

of p = 7.
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Fig. 5.8. Parameter study in Re using adaptive grids generated to a tolerance of
IE = 10-6: (a) Re = 10; (b) Re = 100; (c) Re = 250;) (d) Re = 500. All calculations
used a fixed polynomial order of p = 7.
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changes and refines the grid to an appropriate level at each value of Re. Note
that the corner region is refined to the same level at Re = 10 and Re = 1000.
This is because the nature of the boundary condition-induced singularity is
independent of Re, as opposed to the physically important behavior that
emerges as dissipation is removed from the system.

Although there is obviously no exact solution for this problem, we can
compare with high-resolution numerical simulations of the same flow to demon-
strate that the adaptive procedure produces an accurate approximation. In
a recent study, Botella and Peyret [16] compute solutions to the LDC flow
at Re = 1000 using a Chebyshev collocation method. To improve the accu-
racy of the calculations they use an analytic approximation to subtract off
the singular part of the solution near the corners and compute the remain-
ing smooth part numerically. By explicitly removing the singular part of the
solution they can recover spectral accuracy and exponential convergence. In
contrast, the calculations presented here attempt to "resolve" the singularity
directly through mesh refinement near the corners.

Figure 5.9 compares profiles of the u- and v-components of velocity along
the centerline of the cavity. Data for the comparison is taken from tables 9
and 10 of Botella and Peyret [16]. These values correspond to calculations
with N = 160 Chebyshev modes in each direction, or 25 600 grid points. The
spectral element data corresponds to figure 5.7(d); this mesh has K x N 2 p

7500 grid points. The comparison shows that the two calculations are in
extremely close agreement, and demonstrates that the adaptive procedure
results in a highly accurate solution for small e with an intelligent distribution
of element size.

0.4
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-0.5 0 0.5 1 0 0.2 0.4 0.6 0.8 1U(Xý, y) x

Fig. 5.9. Comparison of velocity profiles through the center of the cavity (x, =
Yc =) at Re = 1000: e, spectral results from Botella & Peyret (1998); -, adaptive
spectral element calculation with tolerance € = 10-.
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Additional information on adaptive spectral element calculations of the
lid-driven cavity problem can be found in [60], including the use of directional
splitting as an efficient way to refine elements in regions where the flow may
be resolved in one direction but under-resolved in another.

6
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Drag
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0 0.5 1 1.5 2 2.5

Fig. 5.10. Unsteady forces on an impulsively accelerated NACA 0012 airfoil at
a = 22.5 degrees and Re = 852. Points (o) indicate refinement steps during the
simulation.

Impulsively accelerated airfoil Next we look at an application of this
technique to an unsteady flow problem. Consider the motion of an airfoil
that is set at an angle of attack a and impulsively accelerated into a still
fluid. Dimensional parameters are the chord length c, the airfoil acceleration
a, and the kinematic viscosity of the fluid v. From these parameters we need
to choose a length scale L and a velocity scale U. The fluid motion satisfies the
incompressible Navier-Stokes equations which we will solve in a non-inertial
reference frame attached to the accelerating airfoil. In non-dimensional form
the governing equations are:

V iu = 0, (5.17)
1 V 2 L

Itu = N(u) - Vp + V u _ L--a. (5.18)

Note that a = -a (cos a, sin a) is the frame acceleration. A natural and
obvious choice for the reference scales is to normalize for unit acceleration by
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Fig. 5.11. Vorticity contours for the flow around an impulsively accelerated airfoil
at ce = 22.5 degrees and Re = 852 (based on chord length and acceleration): (a)
t = 1.7; (b) t = 1.9; (c) t = 2.2; (d) t = 2.4.
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taking L = c and U = v'ac. From these we can also form a time scale
T = L/U = \7f-la. The similarity variable or Reynolds number is then
Re =- x/-a/v, and the problem is completely specified by prescribing a and
Re. These equations can be integrated using the same technique described
in Sect. 5.1 by including the frame acceleration in the integration of the
nonlinear terms and the pressure boundary conditions.

The parameters for this calculation correspond to a companion set of
experiments conducted at GALCIT for a NACA 0012 airfoil in water [33].
The airfoil sits at an angle of attack a = 22.5 degrees and the Reynolds
number is set to Re = 852 to match the experimental setup. Note that the
free-stream velocity increases with time as U,, = at owing to the constant
acceleration. The angle of attack and Reynolds number are set to large values
so that the flow over the airfoil separates almost immediately and produces
a complex vorticity field just above the upper surface.

The problem was solved on a large computational domain with order p = 7
elements. The initial grid of K P 140 elements was built 'by hand' to provide
a sufficiently accurate discretization for starting the adaptive procedure. As a
metric for adaption we required the vorticity field ý = V x u to be represented
on the computational grid with a discretization tolerance of C = 0.01 for
the local polynomial spectrum. In this case we are applying the refinement
criteria to a physically important derived quantity rather than one of the
primitive variables. Adaption steps were carried out at constant time intervals
of AT = 0.1 during the integration from t = 0 to t = 2.4.

Figure 5.10 shows the unsteady loading on the airfoil as it accelerates. The
solid line in this figure connects the force computed at each time step in the
simulation. The points indicate the discrete times when the grid is adapted
to maintain resolution. This figure is shown primarily to document that the
adaptive procedure evolves smoothly and does not produce discontinuous
jumps in the loading on the airfoil.

The developing vorticity field is shown in Fig. 5.11. The airfoil leaves
a weak starting vortex in its wake and rapidly develops a strong region of
separated vorticity along the upper (opposite to the direction of acceleration)
surface. The refinement criteria maintains a sharp resolution of the vorticity
field at all times. During the course of the calculations the number of active
elements in the mesh increases from K z 180 to K P 480, giving a total of
P 30720 grid points in the final mesh. The most aggressive mesh refinement
takes place early in response to the strong vorticlty layer near the leading edge
of the airfoil and the singularity produced by the sharp trailing edge. Similar
to the LDC flow described in Sect. 5.2, the singularity along the boundary
requires the most attention from the adaptive procedure. Once these parts
of the flow are resolved there are relatively few additional refinements to
maintain resolution of the separated vorticity field. To keep the integration
stable the time step is reduced by about two orders of magnitude to a final
value of At i 7.5 x 10'. This maintains a relatively constant CFL number
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Fig. 5.12. Plot of St versus Re for the flow past a circular cylinder. Experiments: o,
Williamson [87]; e, Hammache & Gharib [38]; 3D simulations: +, Henderson [41].
The solid line is a curve fit to two-dimensional simulation data for Re up to 1000 [41].

during the simulation. This necessary reduction in At is due to a combination
of the mesh refinement and the increasing free-stream velocity U".

A detailed comparison of the computational and experimental results for
this problem are the subject of current work.

Cylinder wake Understanding the fluid flow around a straight circular
cylinder is one of the most fundamental problems in fluid mechanics. It's a
model for flow around bridges, buildings, and many other non-aerodynamic
objects. Recent work, both experimental and computational, has revealed
some exciting new information about the nature of this flow including in-
tricate three-dimensional structures that emerge just prior to the onset of
turbulence in the wake. In this section we describe spectral element calcu-
lations of the two-dimensional flow and then pick it back up in Sect. 6.3 to
look at methods for studying the subsequent transition to turbulence.

The system considered is an infinitely long cylinder placed perpendicular
to an otherwise uniform open flow. The sole parameter for this system in then
the Reynolds number: Re - U..d/v, where U,, is the free-stream velocity and
d is the cylinder diameter. First we describe some of the physically important
behavior in this flow, and then come back to details of how it can be sim-
ulated. It helps to begin with a 'road-map' for the sequence of bifurcations
that take the flow from simple to more complex states. There are two useful
quantities to form such a guide to understanding: the non-dimensional shed-
ding frequency and the mean drag coefficient CD. Both shedding frequency
and drag show distinct changes at the various bifurcation points of the wake



Adaptive Spectral Element Methods 303

3L , ,' , .. .. I ' ''

steady

0 o o o ° O 
•

2 o

0o Re

z I

10 100 1000
Re

Fig. 5.13. Drag coefficient as a function of Reynolds number for the flow past a
circular cylinder. Experiments: (o,.), Wieselsberger [83]; 3D simulations: +, Hen-
derson [41]. The solid line is a curve fit to two-dimensional simulation data for Re
up to 1000 [40].

and can be used as a guide to interpreting changes in the wake structure and
dynamics as a function of Reynolds number.

In non-dimensional form the shedding frequency is referred to as the
Strouhal number. It is defined as St =_ f d/uo, where f is the peak oscil-
lation frequency of the wake. The Strouhal-Reynolds number relationship is
shown in Fig. 5.12. At low Reynolds number the flow is steady (St = 0) and
symmetric about the centerline of the wake. At Re1 •- 47 the steady flow
becomes unstable and bifurcates to a two-dimensional, time-periodic flow.
The shedding frequency of the two-dimensional flow increases smoothly with
Reynolds number along the curve, shown in Fig. 5.12. Note that each point
along the two-dimensional curve represents a perfectly time-periodic flow
and there is no evidence of further two-dimensional instabilities for Reynolds
numbers up to Re ;i 1000. At Re2 !- 190 the two-dimensional wake becomes
absolutely unstable to long-wavelength spanwise perturbations and bifurcates
to a three-dimensional flow (mode A). Experiments and computations indi-
cate a further instability at Re4 ý_ 260 marked by the appearance of fine scale
streamwise vortices. We will return to these instabilities in Sect. 6.3.

Figure 5.13 shows the drag curve for flow past a circular cylinder for
Reynolds number up to 1000. In the computations the spanwise-averaged
fluid force F(t) is computed by integrating the shear stress and pressure
over the surface of the cylinder. The x-component of F is the drag, the y-
component is the lift. Because CD is determined from an average over the
surface of the cylinder, it is much less sensitive to changes in the character
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Fig. 5.14. Computational domains used for simulating the flow past a circular cylin-
der. Each domain is a subset of the largest. The parameters L0 and Li determine
the cross-sectional size, and L determines the spanwise dimension.
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of the wake at low Reynolds number than single-point measurements like
the shedding frequency. The 'textbook' version of the drag curve is generally
plotted on a log-log scale where the only discernible feature is the drag crisis
at Re = O(105). The flat response of CD to changes in Reynolds number is
compounded by the fact that experimental drag measurements are extremely
difficult to make at low Reynolds number, and subtle details of the drag curve
are lost in the experimental scatter. The decrease in magnitude of CD in the
steady regime can be fitted to a power-law curve and also makes a sharp but
continuous transition at Re1 . Henderson [40] gives the form and coefficients
for the steady and unsteady drag curves.

This problem is extremely challenging because it combines several features
that are difficult to handle numerically: unsteady separation, thin boundary
layers, outflow boundary conditions, and the need for a large computational
domain to simulate an open flow. If the computational domain is too small
the simulation suffers from blockage. This can have a significant impact on
quantities like the shedding frequency, generally producing higher frequencies
in the the simulations than are observed in experiments [49]. If resolution near
the cylinder is sacrificed for the sake of a larger computational domain then
the physically important flow dynamics may not be computed accurately.

Figure 5.14 shows a sequence of computational domains used to simu-
late both 2D and 3D wakes using nonconforming quadrilateral elements [41].
Boundary conditions are imposed as follows. Along the left, upper, and lower
boundaries we use free-stream conditions: (u1, u2 , u3) = (1, 0, 0). At the sur-
face of the cylinder the velocity is equal to zero (no-slip). Along the right
boundary we use a standard outflow boundary condition for velocity and
pressure:

p=0, Oui =O.

Along all other boundaries the pressure satisfies (5.11).
These domains use large elements away from the cylinder and outside the

wake where the flow is smooth. Local mesh refinement is used to resolve the
boundary layer, near wake, and wake regions downstream of the cylinder. In
this case the refinement is done beforehand and the mesh is static. Clearly
from Figs. 5.12 and 5.13 the simulations predict values of the shedding fre-
quency and drag that agree extremely well with experimental studies up to
the point of 3D transition. Just as important as good agreement with ex-
periments, the simulation results are independent of the grid as shown by a
detailed h- and p-refinement study [9].

6 Instability, Transition, and Turbulence

In the examples presented thus far we have been building towards more and
more complex flows. In this final section we consider methods for studying one
of the most complex phenomenon in fluid dynamics: transition to turbulence.
Applications in this area are particularly demanding and a good match to the
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low numerical dissipation and dispersion errors offered by high-order meth-
ods. For example, a physical instability may be suppressed in a numerical
method with excessive artificial viscosity, or it may be triggered prematurely
by numerical dispersion errors. Spectral element methods applied to problems
in transition and turbulence offer the additional ability so simulate geometri-
cally complex domains. This opens a wide range of possibilities for studying
interesting problems in this area.

First we outline some basic tools for computing linear and nonlinear insta-
bilities of a system efficiently. These tools build on the high-order integration
schemes outlined in Sect. 5.1. The discussion here is based on the framework
for bifurcation analysis presented by Tuckerman & Barkley [81]; they dis-
cuss additional analysis tools such as efficient methods for computing steady
states and performing continuation.

6.1 Linear stability analysis

For the sake of the following discussion, we can write the Navier-Stokes
equations in the 'schematic' form:

atU = N(U) + L U, (6.19)

where N(U) and L U are the operators defined previously. The velocity field
U represents the discretized solution vector whose dimension we denote by
M. We assume this number is quite large, typically O(104).

Exponential power method Now consider the problem of determining
the linear stability of steady states. The stability of U is governed by the
eigenvalues A of the Jacobian A =_ Nu + L:

(Nu + L)u = Au. (6.20)

This follows from the fact that small perturbations to U evolve according to
the linearized stability equations:

Otu = (Nu + L)u (6.21)

To determine the stability of U it is sufficient to know whether any eigenval-
ues have positive real part. Additional information about the leading parts
of the spectrum can also be useful, as well as the structure of the correspond-
ing eigenvectors. In other words, we would like to know complete information
about a few of the leading eigenpairs. We assume that the interesting systems
are all too large to construct the Jacobian directly and compute all eigen-
values and eigenvectors via the QR algorithm (operation count O(M 3 )), so
iterative methods are the key.

The basic iterative technique to compute selected eigenpairs is the power
method. In this method one acts repeatedly with the matrix A on an arbitrary
initial vector u0 to produce the sequence of vectors un = A'uo. This sequence
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approaches the dominant eigenvector, and the sequence of Rayleigh quotients
A_ = uTAu /UTun converges to the corresponding eigenvalue.

Two modifications are needed to make the power method useful for sta-
bility analysis. As stated above, we need a few eigenpairs, not just the domi-
nant one. The calculation of several eigenpairs is accomplished by the Arnoldi
method or one of its variations [4,69]. Initially we form the sequence uo, Auo,

., Ag- 1 uo, whose span defines the Krylov space. K is the number of eigen-
pairs sought. These vectors are orthonormalized to form a basis v1 , V2 , ... ,
VK for the Krylov space. We define the M x K matrix V(i, k) = Vk(i) and the
K x K Hessenberg matrix H =_ VTAV. When H is diagonalized, its eigen-
values approximate K of the eigenvalues of A, and V times its eigenvectors
approximate K of the eigenvectors of A.

The second modification is to change the region of the complex plane
where eigenvalues are sought. The dominant eigenvalues (those largest in
magnitude) are not of interest. These correspond to the same exponentially
decaying modes that motivated the use of a semi-implicit integration scheme
in Sect. 5.1. We want the leading eigenvalues, i.e. those with largest real part.

The solution to the linearized stability problem (6.21) is:

u(t + At) = eAt(NU+L) u(t). (6.22)

The leading eigenvalues of any matrix A are the dominant ones of exp(AtA)
for any positive At. The time integration scheme developed for the full
Navier-Stokes equations is readily available as an approximation to (6.22),
and this is the connection to the power or Arnoldi method: acting with the
operator exp(AtA) is equivalent to integrating the linearized equations over
one time step.

A single change is required in the time stepping code: replace the func-
tion that computes the nonlinear term N(U) with an equivalent function to
compute:

Nu u = (U . V)u + (u. V)U.

Therefore it is a simple matter to adapt the time stepping algorithm (5.8) to
integrate the linearized equations.

Floquet stability analysis The exponential power method can be easily
adapted to compute the stability of periodic orbits rather than steady states.
Consider a T-periodic solution U(t mod T). The operator Nu appearing in
the linearized equations (6.21) will also be T-periodic, and it is no longer
sufficient to look at the eigenvalues of the constant Jacobian matrix. Instead,
stability is determined by the eigenvalues of the operator

fto+T
B = exp (f (Nu(t') + L) dt'. (6.23)

\J 0o
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This operator takes a small perturbation u(to) and evolves it once around
the orbit to give the perturbation at time to + T. In practice the action of B
is computed by integrating (6.21) over T/At time steps.

The eigenvalues u of B are known as Floquet multipliers. For an initial
condition u(to) that is an eigenmode of B, the solution to (6.21) is of the
form

u(t) = fi(t mod T)eýt, (6.24)

where A = log(p/T) is called a Floquet exponent and fi(t mod T) is called
a Floquet mode. The dominant Floquet multipliers (leading Floquet modes)
can be computed by applying the exponential power method to the operator
B.

Acting with B on a vector u means integrating the linear stability equa-
tions over one full period, which in turn means knowing the base flow U at
each time step. Because the solutions are time-periodic, a natural simplifi-
cation is to represent U with a Fourier series in time and only keep enough
modes to maintain a level of accuracy consistent with the rest of the compu-
tations.

6.2 Nonlinear stability analysis

The final tool we need is a means of distinguishing whether a bifurcation is
subcritical or supercritical. Consider the normal form for a pitchfork bifur-
cation:

OtA = a(R - R,)A - aA3 , (6.25)

where A is the amplitude of the bifurcating mode, R is the control parameter,
R, is the bifurcation point, a is a positive constant relating changes in R to
changes in the leading eigenvalue, and a (the Landau coefficient) determines
the nonlinear character of the bifurcation. If a > 0 the bifurcation is super-
critical and nonlinearity saturates the growth of A, resulting in a continuous
transition. If a < 0 the instability is subcritical and a sufficiently strong per-
turbation can trigger a nonlinear instability even for R < R,; the transition
is discontinuous and hysteretic.

The critical task is to determine the sign of a. First we compute the steady
flow U and the leading eigenmode u for R slightly above R,. We then start
a nonlinear simulation using the initial condition U + eu for some small E.
Choosing some parameter to represent the amplitude A of the bifurcation, we
follow the growth of A in time. Initially the simulation shows linear growth
consistent with a small positive eigenvalue a(R-Rc) > 0. As the flow becomes
more nonlinear the time series will begin to deviate from linear growth, in
which case it is simple to estimate the value of a directly from the time
series. For a supercritical bifurcation the amplitude begins to grow slower
than the linear rate, while for a subcritical bifurcation it begins to grow
faster. Therefore, the sign of a can be determined quite reliably.
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6.3 Examples

We close with two detailed examples showing the application of spectral
element methods to complex transition problems: flow over a backward-facing
step [8,46,47], and flow over a circular cylinder [9,41,42]. Numerous other
applications can be found in the literature, including: perturbed plane Coutte
flow [10], perturbed channel flow [71], turbulent flow past a sphere [80], and
turbulent flow over riblets [22,23].

Backward-facing step The separated flow generated as fluid passes over a
backward-facing step is of interest for a variety of reasons. Firstly, separated
flows produced by an abrupt change in geometry are of great importance in
many engineering applications. This has driven numerous studies of the flow
over a backward-facing step during the past 30 years, e.g. [3,28]. Secondly,
from a fundamental perspective, there is a strong interest in understanding
instability and transition to turbulence in non-parallel open flows. In this
context the flow over a backward-facing step has emerged as a prototype of a
nontrivial yet simple geometry in which to examine the onset of turbulence [5,
45-47,50]. Finally, from a strictly computational perspective, the steady two-
dimensional flow over a backward-facing step is an established benchmark in
computational fluid dynamics. New computational studies such as the highly
accurate stability computations considered help expand the database for this
benchmark problem.

The two-dimensional linear stability of this flow has been examined ex-
tensively and is discussed in several publications [30,31,36]. However, addi-
tional computational evidence supports the existence of a local convective
instability (again to two-dimensional disturbances) for a sizable portion of
the domain at Re > 525 [47]. In spite of the numerous investigations of flow
over a backward-facing step available in the literature, two of the most basic
questions for this flow remain open: in the ideal problem with no sidewalls, at
what Reynolds number does the two-dimensional laminar flow first becomes
linearly unstable, and what is the nature of this instability? These are the
questions we wish to address.

Fig. 6.15. Flow geometry for the backward-facing step. The origin of the coordinate
system is at the step edge. We take the ratio of inlet height to step height as a = 1,
so that the expansion ratio is 1 + a = 2.
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Figure 6.15 illustrates the computational domain under consideration and
also serves to define the geometric parameters for the problem. We consider a
step of height h and take the edge of the step as the origin of our coordinate
system. Fluid arrives from an inlet channel of height oh and flows down-
stream into an outlet channel of height (1 +a)h. Here we fix a = 1, giving an
expansion ratio (outlet to inlet) of 1 + a = 2. The inflow and outflow lengths
Li and L. should be large enough that the results are independent of these
parameters. At the inlet, Li = h is sufficient for the range of Reynolds num-
bers we consider [46,84]. The required outflow length Lo varies with Reynolds
number and must be determined from a proper convergence study. Accept-
able values for the range of Re considered here are 15h < L, < 55h [8].
Finally we take the system to be infinitely large and homogeneous in the
spanwise direction, i.e. L, = co.

M,

I I I I I I I I I I I I I I I I

I i ill•lll il1 1 1 1llHlH Il 1

Fig. 6.16. Computational domains for simulating flow over a backward-facing step.
Two subsections of mesh M4 are expanded to show the internal distribution of
quadrature points for polynomial order p = 7. To simulate a three-dimensional
flow the solution is decomposed into M Fourier modes in the periodic spanwise
direction, each computed on the same two-dimensional grid [8].

Figure 6.16 shows a collection of nonconforming spectral element grids
for simulating this flow [8]. Each grid uses local refinement to isolate the
singularity induced by the sharp corner, and to resolve the important recir-
culation zones in the wake of the step and along the upper wall. The use of
local mesh refinement allows high-resolution of the critical regions in this flow
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Fig. 6.17. Three-dimensional structure of the leading eigenmode. Contours indicate
the strength of the downstream component of the perturbation and vectors indicate
the spanwise flow pattern at each downstream plane [8].

along with a large computational domain that pushes the outflow boundary
far downstream.

Stability calculations for this flow consist of two parts. First, the steady
state solution for a given Re is computed using either time-integration or New-
ton methods [81]. Second, the relevant bifurcation points along the steady
branch of solutions are computed using two- and three-dimensional linear
stability analysis based on the iterative methods outlined in Sect. 6.1. The
additional parameter for three-dimensional stability calculations is the span-
wise wavenumber/3 of the perturbation. We define/3 = 27r/A where A is the
corresponding wavelength.

First consider the three-dimensional stability of the flow. Figure 6.18
shows the neutral stability curve up to Re = 1000. Everywhere to the right
of the curve the flow has a positive eigenvalue and is linearly unstable.
The points were obtained by accurately finding zero crossings of eigenvalue
branches (as a function of P) for several Reynolds numbers between 750 and
1000. From Fig. 6.18 it can be seen that the primary linear instability for
the backward-facing step occurs very near Re = 750. The instability is three
dimensional with a streamwise wavenumber 0 P 0.9.
The three-dimensional structure of the leading eigenmode is shown in Fig. 6.17.
The flow visualization is constructed by forming the linear superposition
U + eu of the steady base flow and the computed perturbation field. The
structure of the 3D instability represents streamwise vortices that originate
in the recirculation zone just downstream of the step. In principle, the flow
shown in Fig. 6.17 could be integrated forward in time using the full Navier-
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Stokes equations to determine the nonlinear stability of this flow. This is
complicated by the presence of a strong convective instability [47] and has
not been computed satisfactorily to date.

It is also interesting to look at the two-dimensional stability of this flow.
Note that in the limit ;3 -+ 0 the eigenmodes fall into one of two categories,
either

fi(x, y) = (i(x, y), O(x, y), 0), (6.26)

or

S= A0,0,zV(XY)) (6.27)

We shall refer to these as type-I and type-Il modes respectively.

12 . . . . I . .

10

4

700 800 900 1000
Re

Fig. 6.18. Neutral stability curve for backward-facing step flow. In the shaded
region the flow is linearly unstable at the corresponding Reynolds numbers and
spanwise wavelengths [8].

Figure 6.19 shows the first three eigenvalues corresponding to two-dimensional
modes. At low Reynolds number these modes are, in order of decreasing real
part, type-I, type-II, and then again type-I. At Re P 1000 the second type-I
eigenvalue crosses the type-II eigenvalue, but they do not merge because the
eigenmodes are of different type. A semi-log plot of the data indicates that the
eigenvalues depend exponentially on Re over this range. The corresponding
exponential fits are shown in Fig. 6.19. Extrapolation of these fits indicates
that the two real eigenvalues would cross at Re ; 1350. It is thus likely that
the two eigenvalues join in a complex pair near Re = 1350. This is consistent
with two-dimensional simulations at Re = 1350 which show oscillatory decay
to the two-dimensional steady state. Because the exponential fits in Fig. 6.19
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will not be valid as the eigenvalues approach one another, it is impossible
to estimate what happens at higher Reynolds numbers based on the cur-
rent data. One possibility is that the two-dimensional linear instability for
this flow is a Hopf bifurcation arising from the joining of the two eigenvalue
branches [8].

0.

-0.02

-0.04

i i , I i i II I

400 600 800 1000 1200

Re

Fig. 6.19. Two-dimensional stability results for the backward-facing step. Solid
points and hollow squares denote eigenvalues corresponding to type-I modes and
type-II modes, respectively [8].

Cylinder wake For our final example we return the problem of flow past a
circular cylinder. The range of Re from about 10 to 1000 shown in Figs. 5.12
and 5.13 represents the entire sequence of states from steady laminar flow to
complex turbulent flow for this system. What we wish to understand are the
secondary instabilities corresponding to Re2 and Re2 and how these instabil-
ities drive the transition to turbulence. Roshko first identified the transition
range for flow past a circular cylinder as the range of Re where velocity
fluctuations become irregular [67]; this is generally quoted at Re = 150 to
300. Early flow visualization studies revealed some three-dimensionality in
this regime [32,37], but it was really Williamson who captured the intricate
structure of the 3D flow and demonstrated the clear presence of a finite-
wavenumber secondary instability [86]. The basic flow patterns consist of two
types of 3D vortex shedding now referred to as mode A and mode B. For rea-
sons discussed below these structures are fleeting and can only be captured
in pure form on the computer. From this point we proceed in stages, first
looking at the linear and nonlinear instabilities that produce these modes,
then mechanisms by which they interact to cause transition, and finally some
properties of the 'turbulent' flow at higher Re.
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Linear stability theory is the natural context for examining the origin of
three-dimensionality in the wake [9, 62]. The linear stability problem deter-
mines the structure and spatiotemporal symmetry of the global modes and
the critical parameter values (Re2 and R4) where they first become unstable.
Once perturbed these modes are self-excited and cause transition to a three-
dimensional state. The symmetry of the wake after transition is determined
by the spatiotemporal symmetry of the destabilizing global mode.

Computational domains appropriate for simulating the flow past a cylin-
der were shown in Fig. 5.14. Like the previous example, stability calculations
for this flow consist of two parts. First we compute the 2D base flow cor-
responding to the Karman vortex street by integration the fluid equations
until they converge to a time-periodic state. Second, we compute the rele-
vant bifurcation points along the 2D time-periodic branch of solutions using
three-dimensional Floquet stability analysis.

Figure 6.20 shows the neutral-stability curves for the wake and the two
regions of instability that produce modes A and B. These calculations are
performed using the stability methods outlined in Sect. 6.1; a detailed expla-
nation is given in [9]. The critical values are Re2 -- 190 and A2 -_ 3.96d for
mode A, Re4 - 260 and A2 ý_ 0.822d for mode B. Note that mode A has a
relatively long wavelength that scales on the primary instability wavelength,
i.e. the Karman vortex spacing of A ; 5d, while mode B has a relatively short
wavelength that presumably scales on the thickness of the separating shear
layer. Experimental measurements show exceptional agreement with the pre-
dicted maximum growth rate curve for mode A [88]. Measurements for mode
B also cluster nicely into the predicted range of unstable wavelengths. Refer-
ring back to Figs. 5.12 and 5.13 shows that the critical points for the linear
instabilities coincide with the observed transition points in the response of St
and CD. Given the complexity of the system this is outstanding agreement
for a non-trivial set of quantities. It is also a triumph for linear stability cal-
culations that reduce the complexity of the full three-dimensional stability
problem to a level that can be run on a workstation.

Next we apply the methods for nonlinear stability analysis described in
Sect. 6.2 to determine the nonlinear stability of mode A and mode B. As
stated, the Landau coefficient in (6.25) can be evaluated from a single time
series computed from a full nonlinear calculation. A convenient measure of
the amplitude A is the magnitude of the Fourier component corresponding to
the 3D perturbation [42]. This analysis indicates that a = -0.116 for mode
A (subcritical) and a = 3.92 for mode B (supercritical). Once these coeffi-
cients are known the steady-state amplitudes JAI and IBI can be computed
explicitly.4 Figure 6.21 shows this in the form of a bifurcation diagram for
the two instabilities. This figure also includes additional DNS results that

4 Because mode A is subcritical, the coefficient of the next-order term A5 is nec-
essary to determine saturation. This can be estimated using the same technique
applied to determine the Landau constant [42].
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verify the validity of the amplitude model near the critical points [41,42]. Al-
though these results have not yet been confirmed directly by experiment they
are consistent with experimental observations. Referring back to Fig. 5.12 we
see there is good agreement in the range of hysteresis and the computed
frequency drop. The discontinuous drop in shedding frequency is a natural
result of the subcritical bifurcation to mode A.

I 4

2
o 00 RezB

0 . . . . . . . . 1

200 260 300

Re

Fig. 6.20. Regions of linear instability for the cylinder wake. neutral curves and
critical points (e) are from computations [9]. Open symbols indicate wavelength
measurements from various experimental studies [58, 88, 90].

Figure 6.22 shows a visualization of the full nonlinear form modes A and
B exhibit at saturation in terms of their streamwise and spanwise compo-
nents of vorticity. This figure also reveals their distinct space-time symme-
tries. These symmetries are manifest in the form of a staggered array of
streamwise vortices for mode A and an inline array of streamwise vortices for
mode B [9, 18,89]. Several simulations of the three-dimensional flow (all using
spectral element methods) have reproduced the essential features observed in
experiment and there is now little doubt regarding the qualitative structure
of modes A and B [41,79].

Unfortunately these states are not observed in pure form in the laboratory.
In the range Re ;,• 200 to 260 the natural flow structure may be more appro-
priately characterized as a mixed -A-B state like the one shown in Fig. 6.22c.
The relevant facts are the following. Velocity fluctuations exhibit broad-band
frequency spectra just beyond the onset of mode A, and mode A is in fact
only observed as a transient in the approximate range Re • 180 to 200. At
long times the flow is highly irregular. In contrast to this, mode B is ob-
served with good regularity from Re ; 200 on, and as Re -+ R42 there is a
reasonably well-defined wavelength in the near wake and a sharp peak in the
frequency spectrum. However, this peak is superimposed over a broad band of
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Fig. 6.21. Bifurcation diagrams for (upper) mode A and (lower) mode B. Points
(e) indicate results from three-dimensional simulations [41,42].

frequencies in the background indicative of 'turbulence' farther downstream.
From these observations we see that the flow undergoes a fast transition to
a state that may be characterized as spatiotemporal (ST) chaos at the onset
of mode A rather than through a sequence of further bifurcations.

What are the properties of the system that would lead one to expect
chaotic behavior? We shall argue this in terms of the spanwise energy spec-
trum shown in Fig. 6.23, spanwise dimension L, excitation scale 1E, and
dissipation scale ID. ST chaos is a common feature of systems where excita-
tion occurs at a length scale much smaller than the system size but larger
than the dissipation scale (L > 1E > iD). The excitation scale lE .P A2 is
fixed by the finite-wavenumber instability of mode A. The subcritical nature
of the bifurcation indicates that 1E > 1D at onset. Simulations indicate that
the dynamics are time-periodic or quasi-periodic when L ; X2 so that only
one or two mode A instabilities can be excited. When L > A2 many A-modes
are excited and the simulated flow exhibits ST chaos that is in qualitative
agreement with experimental observations. The dynamics in this case are
driven by the nonlinear competition between multiple mode A instabilities.
This scenario is exactly the Ruelle-Takens-Newhouse (RTN) route to tur-
bulence, a universal route to turbulence in dissipative systems that develop
three or more incommensurate modes of oscillation [61,68]. Finally we close
this example with some observations of the 'turbulent' flow that develops
beyond the transition regime. If one accepts the definition of a turbulent flow
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(a)

S~b)1

A j;

Fig. 6.22. Flow visualization of the three-dimensional vorticity field due to sec-
ondary instability in the wake of a circular cylinder: (a) mode A at Re = 195, (b)
mode B at Re = 265, and (c) mixed A-B state at Re = 265 [41].
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Fig. 6.23. Computed spanwise energy spectrum of the cylinder wake at Re = 265,
indicating the excitation scale due to mode A and the dissipation scale due to
viscosity [41].

4

Fig. 6.24. Formation of dislocations in the turbulent cylinder wake: (left) experi-
mental smoke-wire visualization at Re = 5500 (Norberg 1992); (right) DNS results
at Re = 1000 (Henderson 1997).
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as being characterized by continuous spatial and temporal spectra, then the
cylinder wake is fully turbulent at Re = 300. In the classical view further
increasing Re pushes the system into the regime of 'featureless' turbulence.

There is at least one additional interesting phenomenon that occurs be-
yond the transition regime that can be identified as a unique feature of the
flow. Figure 6.24 shows a spanwise view of the wake that reveals a set of
dislocations in the pattern of vortex shedding. This figure compares both ex-
perimental flow visualization and computer simulations with a large spanwise
dimension of L - 25.13d [41,63]. Other experiments of turbulent flow past
a cylinder also show evidence of dislocations at Re as high as 10i [15]. At
high Re these structures develop spontaneously as long as the aspect ratio is
sufficiently large.

Dislocation events have a distinct effect on the fluctuation lift and drag.
Figure 6.25 shows computed values of CD and CL as a function of the span-
wise dimension L at Re = 1000. In small systems the formation of dislocations
is suppressed and the unsteady forces are roughly periodic. In large systems
CL in particular appears in 'bursts.' Minimum values of CL occur during
the formation of a dislocation due to phase differences along the span of the
cylinder. This 'bursting' phenomenon is a generic feature of high-Re flow past
bluff bodies and is also reported in experimental studies of flow past cylinders
and bluff plates [56,78].
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Fig. 6.25. Unsteady lift and drag coefficients for the 'turbulent' flow past a cylinder
at Re = 1000, illustrating the effect of increasing domain size.

A natural extension of the computational results reported here is to pursue
large-eddy simulation (LES) of the turbulent flow at higher Re. A better
understanding of the role that large-scale structures play on the overall mixing
and dynamics of the flow is certainly necessary for this to succeed. Further
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experience on the application of high-order methods for LES is also needed.

In particular, there are challenges related to issues like proper filtering and
formal correctness on locally refined grids.
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1 Introduction

1.1 General Remarks

These lecture notes are intended as an introduction to the subject of hp-
Finite Element Methods with particular attention to computational fluid
dynamics (CFD) problems. We assume that the reader is familiar with the
governing equations of viscous flow, both compressible and incompressible, as
well as with the basic facts on hyperbolic systems of conservation laws. Good
references on the analysis of the incompressible Navier-Stokes equations are
e.g. [71], and for hyperbolic conservation laws with particular attention to
numerical methods we mention [32].

What are hp-FEM? There are at present two dominant methodologies in
CFD algorithm design, spectral and Finite Difference (FD)/ Finite Volume
(FV) methods. Spectral discretizations in fluid dynamics have a long history,
see e.g. [17] and the references there. Spectral methods are typically based
on subdivisions of the domain in few, rather large elements with high order



hp-FEM for Fluid Flow Simulation 327

polynomial discretizations of the field variables. In most cases, the partial dif-
ferential equations are discretized using collocation in special sets of nodes,
mostly the Cheby~ev or the Lobatto nodes. In spectral methods, convergence
is achieved by raising the order k of the approximation rather than by reduc-
ing the meshwidth h, as is done in finite difference or classical finite element
methods. In FD/FV methods, on the contrary, convergence is achieved by
refining the mesh, possibly adaptively, and by (adaptively) reducing the or-
der of the scheme near discontinuities using limiters. The resulting numerical
schemes are nonlinear, even when applied to linear problems. Unlike FD/FV
methods, the convergence order of spectral methods is limited only by the
regularity of the solution (loosely speaking by the growth of high order deriva-
tives of the solution provided they exist). There are, however, instances (and
we will discuss them) when high derivatives of the solution fail to exist at
least in subdomains and in these cases nothing is to be gained by using very
high order approximations everywhere 1

hp-FEM can be viewed as a unification of both ideas - in a sense, they
allow the combination of (necessarily anisotropic) local mesh refinement in
areas where the exact solution lacks regularity with large, spectral type ele-
ments in areas where the solution is smooth.

When to use hp-FEM? hp-FEM have been successful in applications to
structural mechanics, in particular in applications where high accuracy is
required and where the solutions lack regularity locally due to corner singu-
larities and/or the presence of small parameters (singular perturbation prob-
lems), see e.g. [46], [59]. As we shall see, also in computational fluid dynamics
the judicious application of properly designed hp-FEM can in many practi-
cal situations deliver high resolution and exponential convergence rates where
either FDM/FVM or spectral methods would only yield algebraic rates.

Let us briefly outline common features and differences between hp-FEM
and spectral and FD/FV methods. hp-FEM share with spectral element and
FV methods that arbitrary geometries can be discretized via parametric el-
ement maps. Unlike spectral methods, hp-FEM allow also for nonuniform
distribution of the polynomial degree resp. order of accuracy - for example,
not only can the mesh be locally refined near shocks but the order of the
method may also be reduced to first order there. This order reduction corre-
sponds to the use of limiters. However, the resulting algorithm is linear for
linear problems. This reduction to first order in hp-FEM does not entail a loss
of overall exponential accuracy if the elements where first order is used are
exponentially small. This is typically the case provided we employ geometric
meshes with a number of refinement levels coupled to the spectral order of
the elements. In the small elements supporting the first order discretization,

In these cases, the mathematical theory of n-widths indicates that uniform mesh

refinement with a low order method will give optimal convergence rates that can
at best be matched but not surpassed by spectral methods
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all techniques from FDM/FVM for dealing with discontinuous solutions can
be brought to bear.

As a rule, hp-FEM are based on certain variational formulations of the
problem under consideration. Discretization is performed by restricting in
these formulations the unknown physical fields to finite dimensional sub-
spaces. The design of these subspaces shall be discussed in detail below. In
the derivation of hp-methods, one assumes first that integrals in the varia-
tional formulation are evaluated exactly. This is rarely possible in practice,
since for example for curved elements and nonlinearities some form of numer-
ical quadrature is an integral part of hp-FE algorithms. The resulting, fully
discrete methods are in essence hp-spectral element methods sharing features
of hp-FEM (variational formulation, variable polynomial degree/spectral or-
der) and of the traditional spectral methods (collocation of nonlinearities).

The pillars of any convergent numerical algorithm are stability and con-
sistency. Exponential convergence rates with hp-FEM require, as a rule, the
proper design of the hp-subspaces, i.e. proper choice of the mesh and the
degree distribution. Many choices are usually possible. They can be based
either upon the dominant solution phenomena or on adaptive strategies. As
a rule, hp-FEM are most efficient when highly anisotropic elements are ad-
mitted, e.g. in boundary layers or viscous shock profiles; since anisotropic
adaptive refinements are to date still not as well developed as isotropic ones,
some a-priori mesh-design with anisotropic elements should be performed in
the appropriate flow regions whenever possible. The use of body-fitted, struc-
tured meshes is well-established in CFD and should be kept with hp-FEM
whenever possible. Note, however, that hp-meshes may differ considerably
from the ones used with low order methods.

Unlike in solid mechanics, variational formulations of fluid flow problems
are usually neither symmetric nor coercive due to dominant transport effects.
Therefore stabilized variational formulations have to be used to achieve sta-
bility of FEM in the presence of advection. We will discuss in detail the most
frequently employed formulations such as Galerkin Least Squares (GLS) and
the streamline diffusion FEM (SDFEM) as well as certain Discontinuous-
Galerkin (DG) methods. Such formulations are well established in CFD, but
have to be adapted to accommodate hp-FEM.

These lectures aim at the description of hp-FEM with particular attention
to the formulation of hp-schemes for flow problems and their error analysis.
Methodologically, we start by describing hp-FE discretizations of simple lin-
ear diffusion and transport processes, followed by Galerkin schemes for in-
viscid conservation laws and finally the full, compressible NSE. In each case,
we explain carefully the design of meshes and order distributions which are
most efficient for the resolution of specific flow phenomena, such as singular-
ities, boundary layers and viscous shock profiles in the context of judiciously
chosen model problems. Likewise, the GLS, SDFEM and DG stabilization
techniques for convection dominated problems will also be discussed first for
such model problems.
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These notes are not intended as a mathematical treatise on hp-FE theory,
they rather try to give a concise overview over variational formulations for
hp-FEM and theoretical convergence results that are essential for efficient
fluid flow simulation. The material presented is biased towards the recent
work of the author. Nevertheless, we have tried to give up to date references
to related, and particularly computational work. These references, as well
as the other articles in the present volume should be consulted for different
viewpoints of high order methods.

1.2 Notation

We list some notation which will be used throughout the text. We will denote
the physical domain in which the computations will be performed by Q C IRd

where the dimension d = 1, 2,3 (d = 1 will rarely be considered). Partial
derivatives with respect to the spatial variables xi will be denoted by Oi and
will be understood in the distributional sense, unless stated otherwise. The
usual differential operators V, A, div etc. shall be used and summation over
repeated indices is employed. By L 2 (f2) we denote the usual space of square
integrable functions in [2. By Hk (02), k > 0, we denote the Sobolev space
of functions with kth square integrable derivative in Q2. Evidently, HO =
L2 . By (., .). we denote the L2 innerproduct over the set S2, i.e. (u, v), =
fo uvdx. L 2 (2) is a Hilbert space with inner product (u, v) 9 and norm [lull

((u, u) S2)1/2. Analogously, Hk(12) is equipped with the innerproduct

(U1 v)k,f2 = E (Du, D"v),
Ial<k

where a E INd is a multiindex and D' is the derivative of order a. The norm
IlUllk,Q is defined analogously as in the L 2 case:

IluIlkQ? = ((u7U)kS) 1/2

Similarly, we define Sobolev spaces and norms on lower dimensional sets, such
as e.g. the boundary F = 012. The L2 (r) inner product is just the (Lebesgue)
surface integral taken with respect to the surface measure on F and we write
(u, v)r = fr uvds. Spaces of vector valued functions will be denoted by a
superscript after the space, i.e.

Hk(f2)m= [gk(f2)]m

denotes the m-fold tensor product of the space Hk (02). Typically, m will
denote the number of state variables in the system under consideration.

Throughout, the spectral order of the elements will be denoted by the
letter k, elements by K and partitions of S2 into d-dimensional elements by
T. The letter £ denotes the set of d- 1 dimensional, intersections of elements
K,K' E T.
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1.3 Governing Equations

Continuum mechanics of a compressible fluid in a domain 2 C IRd is described
by the mass density p : 2 -+ IR, the velocity field u : 2 -+ IRd and the energy
e : S? -+ IR. These fields are governed by the (compressible) Navier-Stokes
equations (NSE) which read (in Eulerian form)

Conservation of Mass

ap d aa-t E a. xj (PUj) = 0 . 11

Conservation of Momentum

d 
d aj(Pui) + E yX (Puiuj + pij) = T xi + Si (1.2)

j=1 j=1

for i =,...,d.

Conservation of Energy

a d 19 d a kT d
S(pc) + ((pe + p) uj) = E - (k ý j• (1.3)

j=1 j=l1 a/ aT +=1

where k > 0 denotes thermal diffusivity, r- is the stress tensor describing the
elastic effects in the fluid, e is the internal energy and S E L 2(S2)d are given
sources.

Part I

Fundamentals of hp-FEM

2 Model Problems

We present several scalar model problems modeling diffusive transport of a
scalar quantity u which share many features which we will encounter later
on also in the context of the Navier-Stokes equations.

Consider linear, diffusive transport of a scalar field u(x, t) in •2 x (0, T)
where 2 C IRd is a bounded domain with piecewise smooth boundary F =

0a2; it is governed by the equation

au-+ div f(u) + au = divq(Vu) + S in S2 x (0,T). (2.1)
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Here f and q are the convective resp. diffusive fluxes, and a > 0 the reaction
constraint. We consider here the linear fluxes

f(u) = /3u, (2.2)

where 3 E L°°(f?)d is the flux vector and

q(Vu) = A Vu (2.3)

where A E L( s is a positive, possibly anisotropic diffusivity matrix
satisfying

6 ýTý :_ ýT A(x)ý • c, CTý Vý E IRd, a.e. x E Q (2.4)

for some e > 0.
Of particular interest is the case q = el, whence q(Vu) = e Vu and (2.1)

becomes with (2.2), (2.3)

au
y-+ div (0u) + u = EzAu + S in Q x (0, T). (2.5)
at

Here S E L 2 (f) is a source term which we assume time-independent unless
stated otherwise.

(2.5) is completed by initial- and boundary conditions. To this end, par-
tition F into 2 disjoint parts,

r = F= DU 77N, IDn lN = .

Then we impose initial and boundary conditions

u= f on!D,

q(Vu).n=g on FN, (2.6)
u(.,0)=uo at t=0,

Here n is the exterior unit normal vector to 1. In the following, we will
discuss the hp-FE discretization of various special cases of (2.5). Since many
schemes are based on separate treatment of space and time variables, it is
useful to consider first semidiscretization of (2.5) in space. These spatial hp-
discretizations can be, introduced for the steady state case, i.e. for 2u- = 0
and this is what we will do in the sequel. We consider special cases of (2.5),
in particular the reaction-diffusion and the pure advection problem.

While doing so, we will pay particular attention to the singular pertur-
bation character and the variational formulation of the problem - we review
classical, mixed, stabilized and the discontinuous Galerkin (DG) formula-
tions. Especially the latter ones are being used with increasing frequency in
FE flow simulations (see, e.g., [12,13,18-20,23,26,36,44,49,64-67] but must be
complemented by a suitable time stepping scheme. This will be topic of the
second part of these notes, however.

The preferable type of discretization depends strongly on the dominant
terms in (2.1). We will address several particular cases:
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2.1 Reaction-Diffusion

Here A = 1,13 = 0 and o = 1 so that (2.5), (2.6) become

-eAu+u=S in !2, (2.7)

.9u
u=fonFD, e n = g on FN. (2.8)

2.2 Convection

We assume that in (2.5)/3 E C1(77)d and that E = 0. Then (2.5) becomes, in

the steady state case,

13. Vu + (a + div/3)u = S in Q. (2.9)

This equation is now first order hyperbolic in space and the boundary con-
ditions (2.6) cannot be imposed anymore. It is a model for the continuity
equation (1.1). The correct boundary conditions, for which the problem (2.9)
is well-posed, are as follows: Define in- and outflow boundaries

F_ = {x E F: O(x). n(x) < 0}, T+ = {x E F:,6(x). n(x) > }.

and assume that F = P_ U P+. The "inflow" boundary condition for (2.9) is

u = f on F. (2.10)

No boundary conditions can be prescribed on the outflow boundary F+.

2.3 Convection-Diffusion

We observe in (2.9), (2.10) that the vanishing viscosity e -+ 0 in (2.5) has
caused a reduction of the order of the equation and the loss of a boundary
condition. This is a (very simple) model of the transition from (incompress-
ible) Navier-Stokes to (incompressible) Euler (which is, however, not very
well understood at present). The steady state equation (2.5) with E > 0 and
/3 0 0 is the convection-diffusion equation

,3. Vu + (o + div f3)u = eAu + S in f?, (2.11)

together with the boundary conditions (2.6).
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3 Solution properties

Any stable numerical scheme for the numerical solution of (2.1) - (2.11)
will generate solutions UN which approximate u - for the design of efficient
schemes it is therefore necessary to know certain qualitative features of the so-
lutions to be approximated. hp-FEM allow for simultaneous mesh-refinement
and variation of the polynomial degree and constitute a generalization of
both, the standard low order finite-volume / finite-element methods as well
of the so-called spectral methods. The large flexibility in hp-FEM is most
easily used with unstructured, triangular resp. tetrahedral meshes, and high
polynomial degree which is best suited for irregular flows with moving fea-
tures as e.g. the vortex shedding in incompressible flow in the wake of a
cylinder. Nevertheless, substantial improvements in accuracy vs. degrees of
freedom (and, in particular, exponential convergence) can be realized by using
structured meshes in certain subregions of the flow.

In the following, some typical solution features are presented.

3.1 Corner Singularities

Corner singularities are present in 2-dimensional domains whenever

a) the governing equations contain viscosity (i.e. diffusion or elasticity), [48],
and the boundary of the domain is not smooth at a point 0 E 012 (even
changes in curvature which may not be apparent at first sight excite
corner singularities), or

b) when inside a smooth boundary segment the boundary conditions change
abruptly, (e.g. P 7 in Figure 3.1). In three dimensional domains, for ex-
ample in polyhedra, corner singularities arise at vertices - in addition, at
edges so-called edge-singularities appear which we discuss below.

Corner singularities are solution components with low regularity which are
poorly approximated by low order methods on uniform meshes. In the context
of convection-dominated problems, the resulting large approximation error
at the corner is transported downstream and maybe responsible for spurious
solution features.

We discuss corner singularities in 2-dimensions. Let S2 C IR2 be a polygon
with M possibly curved sides Fj, cf. Figure 3.1, and vertices Pj, j = 1,..., M.

Consider the reaction-diffusion Problem (2.7) with - = 1 in S2 for smooth
source terms S, f and g. We assume that PD n DN coincide with vertices
Pj, i.e. each Tj is contained in either FD or in FN.

If the source terms are smooth, the solution u of (2.7), (2.8) is also smooth
inside f2, but not at the vertices Pj. More precisely, for any s > 0 the solu-
tion u can be decomposed into a smooth part Ureg E H,+2 (12) and singular
functions S(rj, Wj):
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PP

P6 P4 F3 ____ P3

E6
T2

PP

P2

Fig. 3.1. Polygon f2 with vertices P,

M K(s) L

u =Ureg + (r j ) E Eaki Sk(rj, j) (3.1)

where j=1 k=1 I

Ureg E HS+2 (I2),

X(r) > 0 is a smooth cut-off function,

X = 1 near zero,

SjkI (ri, Vj) = r ~j' (log rj)I Pj U (Oj) (3.2)

(rj, Wj) Polar coordinates at Pj,

)Ajj > 0 the singularity exponent,

Pje (Q) a smooth function of Wp.

Notice the dependence of K in (3.1) on s - the smoother Ureg is supposed to be,
the larger is s and the more terms have to be included into the decomposition.
Decomposition (3.1) is by now classical in the theory of elliptic equations -
we mention here only [42] and the references there. It is important to note
that the Sjkj and the Aj do not depend on S, f and on g in (2.7). They only
depend on the interior angle of S2 at the vertex Pj, the boundary conditions
and on the diffusion operator. Analogous results hold for solutions of (2.11)
with e = 1, since there once again the diffusion part of the operator is equal
to -Au. The same result holds also for systems, such as for the Stokes-system
or the system of linearized elasticity arising in viscous, compressible flow.
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3.2 Boundary layers

Other interesting phenomena happen when e -+ 0 in (2.7), (2.11). We see
that formally, at - = 0, the order of the equation changes: (2.11) becomes the
first order hyperbolic problem (2.9) and (2.7) the "zeroth" order problem

u=S in 0. (3.3)

Evidently, for general source terms S, this u will not satisfy the boundary
conditions (2.8) anymore - this (whole or partial) loss of boundary conditions
is typical when the viscosity 6 in the system vanishes. As -4 0, the solution
u6 of (2.7) forms steep gradients near W12. The simplest one-dimensional
problem exhibiting these effects is

-- u" +u=1 in (-1,1), u(±1)=0. (3.4)

We have the exact solution

E( =1--exp(-1 + X)VVIC) exp(-(1 - x)/e•) (3.5)

exp(1/ i•) + exp(-l/v 1 ) exp(1/\/•) + exp(-l//•)

which is equal to a regular part, Ureg, i.e. S = 1, up to two terms that
are exponentially decaying off W12, the so-called (viscous) boundary layers:
i.e. the decomposition ue = Ureg + Ubf. For linear problems with constant
coefficients, viscous boundary layers are always exponential. If the coefficients
are nonconstant or the problem is nonlinear, generally no explicit form of the
layers is known. For nonconstant, analytic coefficients one can show, however,
that boundary layers with length scale d satisfy for every n the estimates (see,
e.g., [45] for a proof in the linear, variable coefficient case)

IDnU•b,(X)l < CKn max{n, 1/E}n exp(-bp(x)/e) (3.6)

where p(x) = dist(x, i12) is the distance to the boundary and the positive
constants b, C, K are independent of n and d. Evidently, the solution (3.5)
satisfies (3.6).

In two dimensions, if ro2 is smooth, an analogous result holds: the solution
ue can be decomposed into a regular part Ureg(x) (whose derivatives remain
bounded as e -+ 0) and boundary layers ubf (whose derivatives behave like

as e -+ 0). ID'UbI 0(6-1I)

Generally, boundary layers of (2.7), (2.11) are special solutions of (2.7)
resp. (2.11) with S - 0, but with nonzero data f,g of the forms

Ubf = U(p/d(e)) P(0) (3.7)

where (p, 0) are boundary fitted coordinates near 612 (see Figure 3.2).
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P6

Fig. 3.2. Boundary fitted coordinates (p, 6) in S

In two dimensions, 0 < s < L is the arclength of as? and s is the normal
distance of a point P = (x, y) to 90.

The function U(.) in (3.7) is independent of E and decaying for positive
arguments - it is the so-called boundary layer profile. In all linear problems,
in particular in (2.7), (2.11), the boundary layer profile is exponential, i.e.

U(C) = exp(-(), ( ý> 0. (3.8)

The function !(s) in (3.7) is smooth independent of E and d(E), the so-called
length-scale of the layer, is usually some simple power of - - in (2.7), it is
d(s) = i whereas in (2.11) d(-) = E or d(e) = -,f depending on whether
the boundary is characteristic or not. In nonlinear problems, not much is
known about decompositions

Ue = Ureg + Ub•

For the incompressible Navier-Stokes equations, the profile U(C) in (3.8) is
the similarity solution of a nonlinear ODE which again is decaying as C tends
towards infinity and the length scale is d(E) = Re-"/2 .

3.3 Viscous Shock Profiles

One dimensional case. Consider the scalar conservation law with viscous
perturbation in one dimension

ut + f (u). = Eu.. (x, t) E IR x 1R+ (3.9)

with initial condition
u(x, 0) = uo(x) . (3.10)
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For E = 0, u(x, t) in general develops discontinuities in finite time. For E > 0,
these shocks are smeared out - we have a viscous shock profile.

Assuming that (3.9) admits a steady asymptotic solution as t -+ cc, this
solution must satisfy

f(u) -= in x E IR (3.11)

lim ii(x) = U± (3.12)
X--± cc

where u± are the left/right states of the shock. We see from (3.11) that ii(x),
if it exists, must have the form

ii(x) = U((x - x-0/6) (3.13)

where x, is the shock-location and U(.) is the viscous shock-profile. U(ý)
satisfies the ordinary differential equation

U• = f(U)C • E (-oc, oo) (3.14)

with the boundary conditions

lim U(s) = U±. (3.15)

Assuming a solution U of (3.14) exists, this solution will be locally analytic if
the flux f(.) is analytic. Moreover, in many cases we have exponential decay
of U(ý) to u±:

JU(±) - ul1 < C exp(-bý), o -* cc. (3.16)

See [68], Chapter 24, for more on this.
Consider the viscous Burgers' equation (3.9) where f(u) = u2/2. Here the

viscous shock profile developing for initial data

a ax < 0
tLO(X) = 

>0

with a > 0 has the form (3.13) with x, = 0 and

U(6) = -atanh(a ) (3.17)

for some a > 0 independent of e. (3.17) evidently satisfies (3.16) with u± =
T- a. We stipulate therefore that viscous shock profiles are internal
layers originating in the shock-location x,. The viscous shock profiles
can be seen as boundary layers at the (generally unknown) free boundary x,.
The viscous shock profile ii(x) in (3.13) is assumed to satisfy an estimate of
the form (3.6), i.e. there are b,C,K > 0 such that

IDn iu(x)l < CKn(max(n, 1/,))n exp(-bp(Ix - xj)/le) (3.18)

for n = 1, 2,... and x : x,. The solution ii(x) with U as in the example
(3.17) is seen to satisfy condition (3.18).
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Higher dimensional case. In dimension d > 1, shocks are discontinuities
in solutions across possibly curved discontinuity surfaces Z, which arise in
nonlinear, hyperbolic equations. If viscosity is present, the discontinuities will
be replaced once more by a viscous shock profile which we assume to have the
following generic form: denoting by (s, p) coordinates fitted to Z (see Figure
3.3) the viscous shock profile is of the form

Ush(S, P) = C(s) Ube(IPI) (3.19)

where ube(p) is a boundary layer function satisfying the estimate (3.6) with
length scale equal to the viscosity parameter 6 and C(s) is smooth (analytic)
independent of s, i.e. IID's CIIL- < c K1 ! for all f, where c, K are independent
of 6.

n

Fig. 3.3. Discontinuity surface Z7 and fitted coordinates (s, p)

We emphasize that the behavior (3.19) for viscous shock profiles is ex-
trapolated from 1-d, there are, to date, no rigorous regularity results in the
nonlinear setting for the solution Ush (S, p) - in particular, the regularity at
shock - boundary and shock - shock interaction points in the presence of vis-
cosity is open. We take here the point of view that viscous shock profiles and
boundary layers are closely related and that, likewise, the corner singulari-
ties and the shock-boundary interaction are of similar nature in that one has
low regularity in an O(E) neighborhood of the interaction point of a globally
relatively smooth (piecewise analytic) solution u.

4 Basic hp FEM

We describe the main components of hp-FEM, beginning with the admissible
meshes followed by the function spaces on these meshes. We make provisions
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for unstructured as well as for patchwise structured meshes since these are
very advantageous for the resolution of specific flow phenomena, if they are
combined with proper distribution of the polynomial degrees. Many of the
meshes used in present day CFD exhibit some structure, such as refinement
towards the surfaces and uniform refinement at the trailing edge and corners.
We will explain how proper design of meshes and polynomial degree distri-
bution in the hp-FEM gives exponential convergence for the solution features
of the previous section.

4.1 hp-FE Spaces on patchwise structured grid

Meshes. Let P denote a partition of f2 into open patches P which are images
of a reference patch P under smooth, bijective maps Fp:

VP E P : P = Fp(P).

We assume that P is either the unit cube

P= Q (-1, 1)d

or the unit simplex d

P = S : E IRd: > 0, Z < 1}

The meshes T are unions of patch meshes Tp which are constructed in the
reference patch P and transported to P E P via the patch map Fp. For each
P, a patch mesh Tp is obtained by first subdividing P into triangles resp.
quadrilaterals K which are affine equivalent to either Q or S; we call this
mesh Tp. A mesh Tp in P E P is then obtained by simply mapping fp to P
using the patch map Fp

VP E P: Tp := {KIK = Fp(K), RE Tp}. (4.1)

The mesh T in 1? is the collection of all patch meshes, i.e.

T=UTP.
PEP

Note that each element K E T is an image of the reference domain P via the
element map FK: if K E P for some P E P',

K = FK(P), FK := Fp o AR (4.2)

where AR : P -+ K E P is affine.
We emphasize that we could choose AR = id and Tp = {P}, thereby

obtaining the usual parametric elements and arbitrary, unstructured meshes.
However, it is advantageous in hp-FEM to use structured patch meshes Tp
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as e.g. geometric corner refinement, anisotropic boundary layer and edge
refinement etc. In what follows, the partition P and the patch maps Fp
{Fp : P E P} shall be fixed, i.e. mesh refinement is performed in P.

We call the mesh T regular, if for any two K, K' E T the intersection
nf K' is either empty or an entire side (more precisely, an entire boundary

segment of dimension 0 < d' < d as e.g. a vertex (d' = 0), an entire edge
(d' = 1), an entire side (d' = 2) etc.). In order for the mesh T to be regular,
the maps Fp must be compatible between patches in the sense that

if PnFP' 0:Fpo(Fp,)-'lip----=-id on PfnP'. (4.3)

The 7Tp are 1-irregular, if they consist of quadratics resp. hexagonal elements
with at most one irregular ("hanging") node per side. T is 1-irregular, if the
Tp C T are either regular or 1-irregular and compatible between patches.

Polynomial subspaces. On the reference element P we define spaces of
polynomials of degree p > 0 as follows:

Qk=span{x.:0_<ai<k, 1<i<d}
d

Pk = span{•. :0 _< aj, 0o_ ai 5< k. (4.4)

Polynomial subspaces on "JP. Let Tp be any mesh consisting of patch
meshes 'Tp and let

k = {kK : K E T}

be a polynomial degree vector on T. The definition of a discontinuous
hp-FE space is now straightforward: if Fp = {Fp : P E P) denotes the
patch-map vector, we set

Sk'°(fl, T,Fp) := {u E L 2 (Q) : UiK OFK E QkK if K E T

is quadrilateral resp. UiK o FK E PkK if K is triangular} .

No interelement continuity is imposed here. If the polynomial degree is uni-
form, kK = k for all K E T, we write Sk,(S?2,T,F p). If T and Fp are clear
from the context, we omit them and write Sk,°(f2).

Let us now turn to continuous hp-FE spaces. Here we assume T to
be either regular or 1-irregular. If the polynomial degrees kK are uniform,
kK = k for all K, we define for k > 1

Sk,1 (j?, , Fp) = Sk,O(f, T, Fp) fH'(SI), (4.6)

i.e. interelement continuity is now enforced and the compatibility (4.3) be-
tween patches is required. If the polynomial degrees are nonuniform, there
are several ways to enforce interelement continuity - assume that K, K' E T
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share a d - 1 dimensional set, and that PK < PK'. One can now either enrich
the polynomials on K or constrain the polynomials on K. We adopt with
(4.6) the latter approach.

Note that one could even allow anisotropic/nonuniform polynomial de-
grees within an element K E T - this becomes important when adaptivity
is considered (see [21] and the references there). Definition (4.6) implies that
DOFs from K' that are unmatched by those from K are constrained to zero
on interfaces K nf K'.

Basic hp-FE Spaces. We introduce the hp-FE subspaces Sk',(Q?, T, FP),
S= 0, 1, which are basic to the hp-FEM; f = 0 will denote discontinuous

functions whereas f = 1 implies H 1 (Q) conformity, i.e. full continuity. These
are the basic and most frequently used hp-spaces.

4.2 Choice of Patch Meshes tp in 2-d

Preliminaries. A mesh T on a bounded polygonal patch P C IR2 is a
partition of f2 into disjoint and open quadrilateral and/or triangular elements
{K} such that P = UKETK. The mesh 7T is called regular if for any two
elements K, K' E T the intersection K n K' is either empty, a single vertex
or an entire side. Otherwise, the mesh T is called irregular. We denote by hK
the diameter of the element K and by PK the diameter of the largest circle
inscribed into K. The meshwidth h of T is given by h = maxKET hK. The
fraction oK := lh-- is the aspect ratio of the cell K. A (regular or irregular)
mesh T is callecf K-shape regular if there exists K > 0 such that

max OrK < r, < oo. (4.7)
KET

T is called affine if each K E T is affine equivalent to a reference element
which is either the square Q = (0, 1)2 or the triangle T = {(x, y): 0 < x < 1•
0 < y < x}, i.e.

K = AK(K), AK(') affine.

Reference meshes. We introduce now some meshes on the reference ele-
ments.

Definition 4.1. Let n E IN0 and a E (0, 1). On Q, the (irregular) geometric
mesh An,, with n + 1 layers and grading factor a is created recursively as
follows: If n = 0, A0  {Q}. Given An,, for n > 0, An+l,, is generated by
subdividing that square K E An,, with 0 E K into four smaller rectangles by
dividing the sides of K in a a : (1 - a) ratio. The (regular) geometric mesh
An,, is obtained from An,, by removing the hanging nodes as indicated in
Figure 4.1.
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In Figure 4.1 the geometric meshes are shown for n = 3 and a = 0.5.
Clearly, An,, is an irregular affine mesh, it has so-called hanging nodes while
zX,, is regular. The elements of the geometric mesh An,, are numbered as
in Figure 4.1, i.e.

An,, = f n} U {f2ij : 1 < i < 3,2 < j < n + 1}. (4.8)

The elements Q2jj, Q2j and £23j constitute the layer j.

X2 X2

1 1

K 34  K 14

33 13

32 12 - K 24
23

11 122

0 0

Fig. 4.1. The geometric meshes An,, and A,, with n = 3 and a = 0.5.

Remark 4.2. On the reference triangle T, An,, and An,, can be defined in a
similar way. An,, is depicted in Figure 4.3.

Definition 4.3. Let T, be an arbitrary mesh on I = (0, 1), given by a parti-
tion of I into subintervals {K.}. On Q, the boundary layer mesh AT is the
product mesh

A- = {K :K = K, x I,K; E T,}.

Figure 4.2 shows a typical boundary layer mesh. We emphasize that any T,
is allowed, in particular, rectangles of arbitrary high aspect ratio can be used
such that boundary layer meshes are not r.-uniform.

Definition 4.4. Let n E N0 and a E (0, 1). Let Tn,, be the one dimensional
geometric mesh refined towards 0 given by a partition of I = (0, 1) into
subintervals {I }n+l where

Ij = (xj-i, xj) with xo = 0 and
xi = a,+'-j, j = ,. n + 1

On Q, the geometric tensor product mesh A2,. is then given by T•,, ® 9T,,

i.e.
"A2= {I x :k Ij E Tn,,, Ik E "n,}
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X2 X2

A~eA2
1 ~1 -

0 T. 1 0 1

Fig. 4.2. Boundary layer mesh and geometric tensor product mesh on Q.

The tensor product mesh A2," contains anisotropic rectangles with arbitrary
large aspect ratio. For the proof of the inf-sup conditions ahead, it is impor-
tant that A_, can be understood as the geometric mesh Anq into which
appropriately scaled versions of boundary layer meshes Aq-r are inserted to
remove the hanging nodes. A geometric tensor product mesh is shown in
Figure 4.2 with n = 5 and a = 0.5. The underlying geometric mesh An,, is
indicated by bold lines.

Remark 4.5. As before, A, can also be defined on the reference triangle T.
This is shown in Figure 4.3. On the reference square Q we can even admit
mixtures of geometric tensor product meshes and geometric meshes A or
A,,, as illustrated in Figure 4.4. They are denoted by A m, and Al. Of
course, other mixtures are imaginable.

X2 X2

,A2

0 1

Fig. 4.3. The meshes A,, and An , on the reference triangle T.

Admissible patch meshes T.

Definition 4.6. An affine mesh 7" on P is called a (Y, Tmn, K)-mesh if
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X2 :i2

1 1

0 0

Fig. 4.4. The meshes A', and A', with n 5 and a 0.5.

1. Tm is an affine mesh which is coarser than T and n-uniform for some
n > 0. The elements of Tm are called macro-elements and 7-m is the
macro-element mesh of T.

2. F7 is a nonempty family of affine reference meshes on the reference square
Q or the reference triangle T.

3. The restriction TK := TIK of T to any macro-element K E 7T, is given

by TK = FK (T) for some T in Y where FK is the affine mapping between

Rand K.

A (F., T-, n)-mesh is thus obtained from the n-uniform mesh T.m by refining
some or all elements with the strategies given by the family F. In the simple
case where

-F= {{QM,{}

the notion "(F, T-m, n)-mesh" reduces to the already introduced notion of K-

uniform affine meshes consisting of quadrilaterals and/or triangles and the
notion of "macro-elements" becomes unnecessary. We are mainly interested
in the family

S n,, ,, A ,ý, (4.9)
{Q}, {T}: n E IN0, T7 arbitrary}

for a E (0, 1) fixed. Here, An,, and A2, is understood as a mesh on Q or T.

Alternatively, one could consider An,, as a part of the macro-element mesh
T-, and put only the irregular patches into the family Y'. If T contains no

triangles, T' can be reduced to

y =o = {An,, A2,", ATA',, n E IN0 , Tý arbitrary} (4.10)
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where An,, and A",X have now to be meshes on Q. We call a (Y', T-fm, n)-mesh
shortly (., a) -mesh where we choose the reduced family Y'F if T contains no
triangles.

(r., a)-meshes are a quite general class of possibly highly irregular meshes.
They are well suited for the effective resolution of boundary layer and corner
singularity phenomena. Typically, mesh-patches from Tm near the boundary
of the domain are partitioned anisotropically using AT.-meshes to approxi-
mate boundary layers. Patches near corners are geometrically refined towards
the corner with the meshes An,, or Anff. This takes into account boundary
layers as well as the singular behaviour of the solution near a corner. In the
interior of the domain a simple n-uniform mesh can be used. Some examples
of (r, a)-meshes are shown in Figure 4.5 and 4.6.

F

Fig. 4.5. Geometric (ti, a)-boundary layer meshes near convex corners.
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Fig. 4.6. Geometric (r,, a)-boundary layer meshes near reentrant corners.

4.3 hp-spaces ont

We introduce the hp-FE spaces investigated later on. Therefore, let Tf be
an affine mesh on P. With each element K E T we associate a polynomial
degree kK. All degrees are stored in a degree vector

k ={kK :K C 7}. (4.11)

We define spaces of continuous and discontinuous piecewise polynomial func-
tions, respectively, by

(u E H'(P) :UIK E

Sk,1( h r QkK(Q if Kisa (.2
quadrilateral VK E (.12

ILPkK ()if K is a triangleJ
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and

SEp e L(Pp): PK E

quadrilateral VK E T.

1 PkK (T) if K is a triangle

We set further Sok"' (j3,')= Sk'j (j/, n Hol (-P),

Sok' /, € Sk'° (P,' t) n L02 (j3).

If the polynomial degree is constant throughout the mesh T (i.e. kg - k kv E
fl we use the shorthand notations Sk,1 (P, 7-) and SkO(P, T).

5 hp-Error Estimates

We present hp-error estimates with particular attention to the approxima-
tion of boundary layers, corner singularities and viscous shock profiles as
discussed above. It is well-known that hp and spectral methods achieve ex-
ponential convergence rates for smooth (analytic) solutions ([17,58]). Expo-
nential convergence of hp-FEM for boundary layers, corner singularities and
viscous shock profiles, however, requires the combination of structured patch
meshes Tp with the proper polynomial degree distribution k. hp-FEM are
robust in the sense that exponential convergence holds even under certain
changes in the mesh and the degree distribution which we will indicate in
each case. This makes the results presented here relevant in practice.

5.1 Basic error estimates

One dimensional hp-approximation. We cite some approximation re-
sults from [58]. To this end, we set I = (-1, 1) and denote by IIUIk,T resp.

IUlk,Y the Hk(I) norm resp. seminorm on I. Denote further SP(I) the poly-

nomials of degree p on I. Then we have

Theorem 5.1. Let uo E Hk+1(I) for some k > 0. Then, for every p Ž 1,
there exists So = irpUo E SP(I) such that

1Iu'0 - S0,11, < (p - s)! 2
0-sfIo, - (p5 s)! IuoIS+l,(

for any 0 < s < min(p, k) 2 and such that

IIuo - oII,• (+1) (P-t)! 2 (5.2)1 (p-t)!u o T -s]or _p(p + 1) (p + t)! 1u0It+1, (.2

2 Interpreting the factorials in terms of Gamma functions and the norms as inter-

polation norms for fractional indices
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for any 0 < t < min(p, k). Moreover, we have

so(+ 1) = uo(± 1). (5.3)

For the proof, we refer e.g. to [58]. We emphasize that in (5.1), (5.2) the
dependence of the error on the polynomial degree p as well as on the reg-
ularities s, t of u is completely explicit. Such results cannot be obtained by
Taylor's theorem and its generalizations which are common in the analysis
of low order FEM.

Corollary 5.2. The projector 7rp in Theorem 5.1 is bounded as follbws:

JJ(7ru)'ilo,T < 211u'11o,T (5.4)

IIJlruilo,y < Iu1Io,Y+ 1 II'u'Io,y (5.5)

for all p Ž 1 and every u E H1 (I) where C > 0 is independent of p.

Proof. (5.1) with s = 0 implies (5.4) since

11411o' ,T _ Ilsh - u'l10,iT+ IJlul0,I T _ 21Iu'llo,T.

(5.2) with t = 0 implies (5.5) since

1I501oo,1 < Ilso - UoloT±+ IIuOIIo,T1

_• IIUol 0,T+ IIoll0, 0
p=+l) 1

Approximation on quadrilaterals. Higher dimensional approximation
results can be obtained from Theorem 5.1 by tensor product construction.
We denote by 7rp, uo the one-dimensional projector in Theorem 5.1 applied to
uo as function of the i th coordinate alone and perform the error analysis for
d=2.
Let ý = (-1, 1)2 and denote by "'i, i = 1, 2, 3, 4 the sides of Q as shown in
Figure 5.1.

Theorem 5.3. (Reference Element Approximation) Let Q = (_1,1)2 as in
Figure 5.1 and uo E Hk+l = (Q) for some k > 1. Let Hp =7rp2 denote the
tensor product projector. Then there holds:

7rp uo = uo at the vertices of •, (5.6)

= f h, r(uolI•) if i is odd, (5.7)
7rP u(uo1,ý) if i is even.
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73

74 72

Fig. 5.1. Q and the notation for the sides

There hold the error estimates

IV(uo -_ puo)iO 11 2 (p- s)! {IIaoi •,oII,2 + oIIo } +
2 (p-S+l)! (5.8)

p~~~p~~~l)19 (p2s 1) IOi8IIo, Q + Ila,8uoI92~2 (p-s)!

2(p ± P 1) )! lauoI•' , + []I 2 UOI[ , )(5

-- ý + 2 0 + (59

4 (P - S+l1)!1, 2U
p 2(ps 1)2 (p - 1)! 1 Ou

for any 0•<s < min(p, k).

Proof. We prove (5.9). It holds

io - 0 puQ < 21o u _- + 2I1ir<(u 04

For the first term we use the bound (5.2), resulting in

1 U _ p-uI12 < (P8)S), !os+1 U112
1p0Cp + 1) (p + s)! 5.

For the second term, (5.5) and (5.1), (5.2) give

I~i ~ 0 05 iruI~•21 ruI + 1) IIu r Q)I
2 (p t)-l~+U1

Ap +l1) (p +t0! OQý
2 (p-r)! I+ )alr01

Pp2(p+1)2 (p+r)1) I4
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Selecting t = s and r = s - 1 gives (5.9). The proof of (5.8) is analogous. 0

Approximation on quadrilateral meshes with hanging meshes. Con-
sider now a patch P E 7) with mesh Tp and corresponding reference mesh Tip
in P. We assume that all K E Tp are quadrilateral, possibly with hanging
nodes.

Theorem 5.4. (Discontinuous Approximation) Let P E P with quadrilat-
eral, possibly 1-irregular mesh Tp of shape-regular elements and polynomial
degree distribution p. For all K E Tp let uIg E HkK+I (K) for some kK _ 1
and define Thu E SP'°(P, Tp) elementwise by

(Tu)K oFp :=TpK(UIKoFp) VK E Tp

with 17p as in Theorem 5.3.

Then there holds the estimate for 0 < sK :_ min(pK, kK)

I1u - H•l",P <

C E (hK 2SK+2 1 -!(KS~fj Klk(5.10)
KETp 2 PK(PK ± 1)

where fi = u o Fp, K = Fp(K) and where

(p-s)! + 1 (p-s+1)!

(p+s)! p(p+ ) (p+•-1)!'

Further, there holds

IIV(u-Hu C_ (_ )7 < C hK 2SK(5.II0 -T 2ll ,PPK S) K+ (5.11)

The constant C > 0 depends only on Fp, but is independent of hK, PK

and SK.

Proof. The L 2-estimate (5.10) follows immediately by a change of variables
and a scaling argument from Theorem 5.3.

For the gradient estimate, we observe that

]IV(u - HU)II2,p < C(Fp)(II(u - fu) o FpI], + I]]((u - T[u) o Fp)12,).
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For the first term we use (5.10), for the second one we use (5.8), after
scaling to the reference element:

IIV((u - Hu) o Fp)JI'o

-- Z 118i((u - fu) o FP)II, ± H02((u - flu) oFP)I•,k
KETp

= • hl,g h 2,kII(I - IUpK)u o Fp o AKiiop

KEtP
i=1,2

(5 .8 ) ) 2 (P K -- SK ) ! ^11 6 K + 1 12 , ^ S2+ I52< 2(hK) 2 t (PK + SK)! (i1 UO K 0uPII0p + 62K+
1 UOKII0 p)

K ETPp +K)

(PK - SK + 1)! (1161K 2 UOK 1 + 68UO,K 12

PK(PK + 1) (PK +SK -)!OP

where
UO,K := u o Fp oAK = 1 oAK, K E Tp.

Affine scaling from P to K E Tp gives the assertion. 5

The error bounds in Theorem 5.4 simplify for uniform p.

Corollary 5.5. (Uniform order estimate)
Assume that ft := u o Fp E Hk+l (P) and that for all K E Tp

PK=P, SK=S, 0<s<min(p,k).

Then there holds for flu E SP'O(P, Tp) and 12 := u o Fp

I 7u- uI12,p < C 1 ftp's) E (hK)2s+2 If12+1 5.2
1p + 1) K(~)ET\ 2 8 'UsIk (5.12)
p~+1 KETp

and

IIV(u - Ilu)II,,p < C4(p,s) E (, )8i2+j,K (5.13)

KETp

Here C depends only on the patch mapping Fp but not on s,p, hK.
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Remark 5.6. (Anisotropic error estimates)
We note in passing that the above error estimate assumed the shape

regularity of the K merely for convenience - in fact the explicit error bounds in
Theorem 5.3 and 5.4 above could be easily generalized to anisotropic element
shapes (with edge-lengths hiK and h2K) and even to anisotropic polynomial
degrees PIK, P2K, say. Error bounds explicit in these parameters can be
deduced by inspecting the proofs of the above theorems.

Theorem 5.4 addressed only discontinuous approximations; it turns out,
however, that also continuous, piecewise polynomial approximations can be
obtained.

Theorem 5.7. (Continuous approximations)
Let Q C IR2 and let P E P with a 1-irregular mesh consisting of shape reg-

ular quadrilaterals K of diameter hK. Let the polynomial degree be uniform,

PK = p. Let uIK E HkK+1 (K) for some kK >_ 1 and let u E H 2 (p).

Then there exists a projector Thu E Sp'1 (P, Tp) such that the error bounds
(5.12), (5.13) hold, with a possibly different value of C.

Proof. If Tp does not contain hanging nodes, Tp is regular and we take
7 = H in Theorem 5.4. Since H was constructed elementwise, the proper-

ties (5.10), (5.11) together with the assumption that u E H2 (P) give the
continuity of Thu in P.

Consider now that Tp contains hanging nodes. A typical situation in the
reference mesh 7"p is shown in Figure 5.2 where the elements have been scaled
to unit size for convenience.

Y12 f13

"{1123 3

Fig. 5.2. Hanging node * and adjacent elements

Since u E H 2 (p), u E C°(P). By (5.6), u - THu vanishes at the points x
in Figure 5.2. Denote by [u - Hu]ij the jump of u - ITu across *ij. By (5.9),
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the jump of Hu across 723 is zero. Since u E C°(P), [u - 1lu]ij = -[7u]ij.
Further, [H-u]ij E Pp(-yj).

We now construct a trace-lifting of [I1u] across 712 U 713 as follows: We
set f [H1u12(61) on K2 ,

V(ý) = -(•2 + 1) / [uis(•1)[17U113(61) on K3.

Since [17u] 23 = 0, V is continuous on K 2 U K 3 and

IIVVIIL2(k 2uk 3) <_ C 1i [flu] 1H½A (7y2UY1 3) (5.14)

where C is independent of p. By the trace theorem and since u E Co ( U3 •),
we have

[fl]1j Il~u- 17u]H 11
1 1H2 (-YlUYl3) H2 (712 U713)

-< 1 (U -- H u)+IIH½(•YlU-Il)

+ 11(u -H-u)_IIHA('7 l 2u'Yl3) (5.15)

3

< C 11 lU - J1UIIH1(k.).
j=1

where ()± denote traces from ý2 > 0 and ý2 < 0, respectively. By construction
V + Hu is continuous on and across 712 and 713.

We define

H~ 1fu on K1

Y + flu on K 2 UK 3 .

Then, on K:= K 1 uK 2 UK 3 ,

3

IIV(u - Hu)llo,1 < IIVVIIo,R 2u•R3 + IIV(u - !lu)ll0 ,Rk •
i=1

Using (5.10), (5.11) we get
3

lI(VW - 1u)I, < C •2 II(Vu - )IIU),, (5.16)
i=1

where C > 0 is independent of p.
If the Ki are not of unit size, we may scale the estimate (5.13) without

incurring h-powers. Since
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Hulak = HuaR,

further liftings in the presence of additional hanging nodes on OK can be
performed in the adjacent element patches, resulting in the error bounds
(5.12), (5.13) with a larger C. n

5.2 Corner singularities

Corner singularities are present in polygons and polyhedra whenever the
governing equations contain second order, viscous terms, but also appear in
certain inviscid problems (see, eg. Figure 12 in the article [19]). A recent refer-
ence is [33], [42] where further references can be found. We address the hp-FE
approximation of corner singularities - although these singularities have very
low regularity at the corner, exponential convergence results are nevertheless
possible. To present ideas in the simplemost setting, we start in dimension
one (where corner singularities do not arise in practice), continue in the 2-d
case and comment finally on the 3-d case, where 2 types of singularities, edge
and vertex singularities, must be distinguished.

One dimensional case. In I = (0, 1) a typical corner singularity function
is given by s(x) = g(x)rA 

(5.17)

where r(x) = lxi and g(x) is analytic in [0, 1]. The singularity exponent A is
not an integer and it must hold that

A > 1/2

to ensure that s(x) has finite energy, i.e. that JIsIL,1I < oo. Typically, A is
small. For example, for A < 3/2 the singular function s(x) 0 H2 (I) and
finite difference/ finite volume methods on uniform meshes can not even
achieve first order convergence in H1 (I). Likewise, spectral methods which
approximate s(x) on I by increasing the polynomial degree k will produce
low algebraic convergence rates such as (see, e.g. [58])

IIs - Sklle,i - Ck-( 2( )+l), k = 1, 2, ... , t = 0, 1. (5.18)

Nevertheless, s(x) is analytic on the set (0, 1], so the low rate (5.18) is caused
solely by the point singularity at x = 0. hp-FEM exploit this piecewise ana-
lyticity as follows.

Consider the sequence of geometric meshes Tn,' with n layers and ge-
ometric grading factor a, 0 < a < 1, and polynomial degrees kK shown in
Fig0iF@,6.that here the grading factor a = 0.5 and that the number n of re-
finements is proportional to the maximal polynomial degree kmax = max{kK :
K E Tn' } in the mesh: As n increases, mesh and polynomial orders change
simultaneously. We have the following hp-approximation result:
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0

0 1 2

0 1 2
3 I

0 1 2 3

sitll i

Fig. 5.3. Geometric mesh and polynomial degree distribution k for root singularity
at x = 0 (discontinuous polynomials)

Theorem 5.8. Consider the root singularity s(x) in (5.17) defined in I =

(0, 1). Let Tno' = {fK : j = 1,... ,n}, Kjg = (0, un- 1), Ky = (fn--j+l,n-i),

j - 2,..., n be the geometric mesh with n layers and grading factor 0 < U < 1
as in Figure 4.1. Let the degree distribution k (n) = {kjn j = 1,... ,n} sat-
isfy k1 > p(j - 1) for some p = p(a) > 0 sufficiently large. Then for every
n there exists a (possibly discontinuous) polynomial

sn(x) E Sn := Sk(n)'O(I, Tn'o)

satisfying the error bound

Is - snIIL2(l) < Ce-bn < Ce-bV-N (5.19)

where N = dim(Sn) = 0(n 2 ) and C, b are independent of n (but depend on
a and a,).

If kn > pj, (5.19) still holds with an s, (x) E sk(n)'l(1, Tn'a).
If the polynomial degree is uniform, i.e. kjn = k = n for all n, then (5.19)

still holds, with possibly different constants b and C.

For a proof, we refer for example to [58].
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Theorem 5.8 shows that by judicious combination of mesh T and degree
vector k, exponential convergence can be achieved. Mesh refinement or order
increase alone yield only algebraic convergence rates. Similar results hold also
when the pointwise error is of interest.

Two dimensional case. Consider a polygon S2 C IR2 as shown in Figure
3.1. A corner singular function S(rj, Spj) at vertex Pj is as in (3.2). To simplify
the notation, we may assume that Pj = 0 and that r(x) = rj(x) = Ix1. Then
there holds again an exponential convergence result.

Theorem 5.9. Let S2 be a polygonal domain containing the origin 0 as a
vertex and let Using = S(r, V) be a singular function as in (3.2). Let 0 <
a < 1 and {Tn'Un be a sequence of geometric meshes refined towards 0
with n layers (see, e.g. Figure 5.3) and grading factor o, 0 < a < 1. Let the
polynomial degree k be uniform and proportional to the number of layers, i.e.
k - n. Then, for every n exists a continuous, piecewise polynomial function
un(x) E Sk'l(QW,T7-) such that

IIS(r,v) - Un<IH(0) Ce- b = Ce-bN" 3  (5.20)

where b, C > 0 are independent of N = dim(Sk'l(12, Tno')), the number of
degrees of freedom of Sk'l(S2, Tn,-).

For a proof, we refer for example to [34], [58].

Remark 5.10. We emphasize that uniform polynomial degree k is not neces-
sary - it suffices in fact to allow k = 2 in the element abutting at 0, and to
let kK increase linearly with the number of elements K' E Tn,G between K
and 0.

Remark 5.11. Theorems 5.8 and 5.9 give exponential convergence for any
0 < a < 1. There arises the question for the optimal a. In one dimension,
one can show that uaopt = (Vf -- 1)2 = 0.17... is optimal regardless of the
strength of the singularity. In two dimensions, no analytical result is known,
but also here geometric meshes with grading a P- u0pt outperform meshes
with other values of a, see also Figure 10.11 below.

If w contains more than one vertex as e.g. in Figure 3.1, (5.20) still holds
if at each vertex (reentrant or not) a geometric mesh patch 'fln, is used.

Remark 5.12. For (5.20) to hold, it is not necessary that the domain Q2 is
a straight sided polygon. The same result holds also for curved domains,
see [2].
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Remark 5.13. In three dimensions, at vertices the construction is analogous,
whereas at edges of polyhedra S? C IR3 the geometric mesh refinement is
anisotropic towards the edge. The resulting geometric meshes contain in the
vicinity of edges the so-called "needle elements" of aspect ratio 1 : UP - this is
necessary to achieve exponential convergence in three dimensional polyhedra.
Geometric refinement towards the edge with n-uniform meshes will not give
exponential convergence rates (see [3] and Remark 5.18 for more).

5.3 hp-Boundary layer resolution

Analogous to corner singularities, hp-FEM can deal very effectively with
boundary layers and viscous shock profiles as introduced in Sections 3.2 and
3.3. Here, we collect the main mesh design principles and convergence results
for the hp-FEM for these problems (see also the references [59], [61], [45] for
proofs and further details).

Boundary layers are, like corner singularities, essentially one-dimensional
phenomena; therefore, we first address the hp-FEM for boundary layers in
one dimension.

One dimensional results. On the interval I = (0, 1), consider a boundary
layer function with length-scale d > 0 satisfying the estimates (3.6). A typical
example is the (ubiquitous) exponential boundary layer u d(x) = exp(-x/d).
For the hp-FEM, we have the following result [59].

Theorem 5.14. In I = (0, 1), consider the exponential boundary layer func-
tion

udf(x) = exp(-x/d).

For 0 < r < 4/e, 0 < d < 1, and k = 1, 2,... let Tk be a sequence of meshes
defined by

Tb= {(0', kd), (nkd, 1)} if nkd < 1,
' k- (0, ) }(5.21)"Td- =(if nkd > 1.

Let the polynomial degree be uniform and equal to k; then for every k E IN
exists uE Sk', (I, Tbk) such that the following error estimates hold:

Iud -- udlIL2(I) < Cd12 exp(-bk),

Ibut - uI IH1(i) •_ Cd-I 2 exp(-bk),

Ilud - udII/o(I) _ C exp(-bk).

Here b, C > 0 are constants which are independent of d, k, but depend on r.
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We see that in the presence of boundary layers, 2 elements are sufficient
for robust exponential resolution of boundary layers in the context of the
hp-FEM. Note, however, that the size of the smaller element is crucial - it
must be proportional to kd; the precise value need not be achieved and the
constant C does not depend sensitively on n, as the results in Figure 5.4
show. In figures 5.5 - 5.7, we see the comparison of various finite element
methods in terms of the error vs. the number of degrees of freedom. Low
order methods with uniform meshes as well as spectral methods on a fixed
mesh are clearly inferior to low order methods on judiciously refined meshes
which in turn are inferior to the hp-FEM, especially at very small values
of d.

2 I hp-version, d=10A(-6)10 -, , , , , , ,

- k=0.5

10-3 -- k=0.71SI..... k --10 k=1.5

OLJ

101

Cr

• 10-6

5 10 15 20 25 30 35 40 45 50
Degrees of Freedom

Fig. 5.4. The dependence on the parameter K.

We see here the comparison in approximability in the "Energy" norm

IlUllE djulHa(l) + IIUIIL2(C)

for various methods - here I = (-1, 1) and ud was as in (3.6). We clearly

see the superiority of the hp-FEM over all other approaches. In particular,
for small values of d the only way to get high accuracy in the layer at a
reasonable number of DOF is the hp-FEM.
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Comparison of FEMs, d=0.01

100
.......... ..... . . .E 10-2 'L" •...........

0 ....."..

0)N S10, ",\ "

-c 4"C- 1-4 " '
10\

o

10-5" 10- h-version unif \

- -eso nfmesh,p=1

10-s -- hp-version "\

..... h-version exp mesh,p=1

10-7 .. p-version

100 101 102
Degrees of Freedom

Fig. 5.5. Comparison of various methods, d = 10- 2
.

Comparison of FEMs, d=O.001

S100-

5,,

_101

w

,~10"n hpveson\

- h-version uni t m esh,p=1 
" ,

10 - - hp-version

.h-version esp meshp=1

1 &o-. -p-version

100 101 102
Degrees of Freedom

Fig. 5.6. Comparison of various methods, d = 10-3.
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Comparison of FEMs, d=l0A(-6)100

S10,

._ . ................

. 10 "

h-version unif mesh,p=1

hp-version

104 h-version exp meshp=1

p-version

10 o
100 101 102

Degrees of Freedom

Fig. 5.7. Comparison of various methods, d = 10-6.

Let us still comment further on theorem 5.14. Two items seem to limit the
generality of the result: the explicit form of ude and the specific knowledge
of the parameter d for the mesh design. In fact, both prerequisites can be
relaxed. We have [45,59].

Theorem 5.15. Let the boundary layer function u d on I = (0, 1) be as in
(3.6). Define for k = 1, 2,3,... the mesh Tk as in (5.21) above. Then there
exists ud e Sk'l(I,Tk) on I such that, for 0 < r < Ko,

Iluf - UkIlLoo(I) + rpdll(u 1f - Uk)'IIL= (I) < Cebk

where b, C > 0 are independent of d, r and k.
Moreover,

ud(O) = ud(0o), ud(1) = ud (1)

If the length scale E of the boundary layer is not known explicitly, or if
several length scales dj, d2 ,..., d, are present, these scales must be known
explicitly in order to construct the hp-boundary layer meshes. Moreover, the
FE-subspaces are not hierarchic, since at every k-increase the meshes are
changed. This is overcome once more by means of geometric meshes.

Theorem 5.16. On I = (0, 1) consider a boundary layer u d of length scale
d as in (3.6). Let n E IN be fixed and consider in I the geometric mesh T',0
with n layers and grading factor a. Assume scale resolution, i.e. that

UL < cd (5.22)
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for some c > 0. Then there are C, r > 0 such that for every k E IN there is
k E Sk' (I,Tno') with

Jjd- Udl 1Udd),k
S)-(I) + dIILoo) <k Ce (5.23)

For a proof, see [45].
As compared to Theorem 5.15, we have an additional condition (5.22);

in the context of hp-FEM, scale resolution is not a very severe condition,
since geometric mesh refinement allows to resolve extremely small scales
with few layers. For example, let d = 10-10 and ao"= 0.1. Then L = 10
layers will suffice in (5.22). More generally, we get scale resolution provided
that L = O(log,(d)), a weak requirement if compared to uniform mesh re-
finement necessary for low order elements; even adaptive low order elements
will require considerably more DOF (in terms of small d) to resolve the small
scales.

Two dimensional results (smooth domain). The previous results on
one-dimensional hp-boundary layer resolution apply immediately to bound-
ary layers of the form (5.5). The main idea is now to use a tensor product
mesh with anisotropic element that are aligned with the layer. The following
figure shows in detail this construction.

(0, Oi+i) F' El

F X =X(p,6) S 2  akd
dD = x(p, 0) D' C'no y = y(p, 6)

A S1

(poE 9i+1) A' B'
(O, 0j) P po

B OW

(Po, 0i) P

Fig. 5.8. Boundary-fitted elements in 20.

If we now look at the components of (3.7), we see that the boundary
layer effect is still only a one-dimensional one, in the direction of p (the
functions Tj (0) being smooth). Hence we may define boundary-fitted elements
(as shown in Figure 5.8) on 12o. We do this by dividing 8(2 into subintervals
(0i, Oi+1), 1 < i < mr-, 0 E OR? and drawing the inward normal at 09, 1 < i <
m, of length Po. Then the points (po, 9j) are connected by the curve p = Po.
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Each curvilinear quadrilateral S = ABEF is then further subdivided into
two elements S1 and S2 by the curve p = rkd, according to the prescription
in the previous section. Looking at ABEF in the (p, 0) coordinates then gives

two rectangular elements Si = A'B'C'D' and 52 = D'C'E'F' as shown in
Figure 5.8. The local polynomial space on Si, i = 1, 2 is then defined (using
the notation v(X, y) = a(p, 0) for (x, y) = (x(p, 0), y(p, 0))) by

Qk(Si) = {v(x,y) :(p,0) E Qk(§i)I.

Note that the basis functions we use are polynomials in (p, 9) instead of in
(x,Y).

Consider the local approximation of (3.7) over the space

Vk (S) ={v EC (S): vs E Qk(Si)}.

The function -i being smooth, is approximated exponentially by a piecewise
polynomial rLk (0) of degree k. The boundary layer function exp (-oap/d) is
approximated at an exponential rate by a piecewise polynomial v (p), of de-
gree k - q, as in Theorem 5.7. Then, for q fixed, k large enough, we obtain
by a simple tensor product argument

q

-9)- E i" (9) iv(p) < Cd'/2 exp(-bk) (5.24)
i=O EdS

so that the local approximation in the energy norm is the same as that in
the one-dimensional case.

Remark 5.17. So far, we considered only boundary-fitted meshes. Analogous
results are also valid for more general, properly refined triangulations at the
boundary [46].

Similar arguments apply also for the other results, Theorems ((5.15)) and
5.16, if they are combined with high order polynomial approximation on large
elements along the layer/front.

Remark 5.18. (on anisotropic refinement) We emphasize here that anisotropic
mesh refinement is a conditio-sine-qua-non for the robust exponential conver-
gence of hp-FEM in the presence of boundary layers and edge singularities
in polyhedra; isotropic refinement will not suffice, since e.g. in shape regu-
lar geometric meshes the number of elements (and therefore the number of
degrees of freedom) will increase exponentially (see Figure 5.9).

Boundary layer-corner singularity interaction. The above remarks ap-
ply only for a smooth boundary resp. near a smooth boundary segment. For
flow problems with small viscosity or the reaction-diffusion equation (2.7)
with small diffusion constant e in a polygon. Here boundary layers appear
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CC

Fig. 5.9. Geometric isotropic and anisotropic refinement towards curve C

near smooth boundary segments, corner singularities near vertices and corner-
layers in the transition region between corner and boundary segment. All
these effects are resolved by hp-FEM based on the (k, o)-meshes in Section 4
(see in particular Figures 8-9 in Chapter 4). We conjecture that the solution
of (2.7) in polygonal domains for 0 < E < 1 can be approximated robustly at
an exponential rate. This is corroborated also by numerical experiments.

In the convection-diffusion problem (2.11) the additional difficulty arises
that the dominant transport terms propagate the effect of corner singularities
into the domain along characteristics. For positive E > 0 at vertices, the typi-
cal corner singularities arise which generate so-called characteristic boundary
layers along characteristics. For piecewise analytic data, the singular support
of the solution contains characteristic lines which changes the length-scale of
the layers associated with these lines. Schematically, this is shown in Figure
5 "10At the outflow boundary

{+ = x E r: n(x) > 0}

we have an outflow boundary layer of width O(E), whereas along the
characteristic sets

C := {x E D : _ý(s) = 3(x(s)), x(0) = Pi, i = 1,....M},

i.e. the union of integral curves (contained in f) of the advection field f3(x)
through the vertices O(V-./), so-called parabolic layers arise. Notice that
the corner singularities at inflow vertices Pi E L_ := r\F+ (we assume here
that F does not contain characteristic segments) influence these layers; their
precise regularity is, even in the linear, 2 - d case, still under investigation.

In Figure 5.10, the lines in C are straight since the field fl is constant. In
general, these lines are curved for variable /3 = •3(x) and the hp-mesh design
must be anisotropic and geometric towards C in order to achieve exponential
convergence (see Remark 5.18).

Similar remarks apply also to the viscous shock profiles introduced in
Section 3.3.
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0(E) outflow layers

P5  P2

0(/Fc) characteristic layers

P1

Fig. 5.10. Convection-Diffusion problem (2.11) in a polygon R-length scales of the
layers

Part II

hp discretization techniques

The convergence of any numerical method is based upon consistency of the
approximation and upon stability of the discretization. We have seen in the
first part that hp-FEM can achieve exponential approximation rates for typi-
cal flow viscous features; this requires the combination and simultaneous vari-
ation of polynomial order and strong, possibly anisotropic, mesh-refinement.
There arises the question on how to stably discretize CFD problems with
hp-approximations. This part of the notes deals with the most important
discretization techniques for such problems. All discretizations are based on
some form of Galerkin projection upon the hp-subspaces. This methodology
is well-established in solid mechanics where stable variational principles for
most problems are readily available. In CFD we have to deal in particular with
strongly advection dominated problems for which the usual Galerkin type dis-
cretizations do not exhibit good stability properties. To ensure robustness, we
must therefore resort to non-standard - from the point of view of symmetry -
discretization techniques for the viscous terms such as finite-volume, discon-
tinuous Galerkin methods or in particular the stabilized Galerkin schemes, i.e.
streamline-diffusion FEM (SDFEM) and the Galerkin-Least Squares (GLS)
techniques. The presentation of these techniques is the purpose of the second
part of the notes.
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6 Reaction-Diffusion

We consider the discretization of the problem (2.7), (2.8). Several FE dis-
cretizations are presented, each based on specific variational formulation of
(2.7), (2.8). Of particular interest are discontinuous approximations which
can be used with the discontinuous Galerkin technique for first order prob-
lems, see Sections 7 and 12 ahead.

6.1 Standard (continuous) Discretization

We assume first that the Dirichlet data f in (2.8) is zero and introduce the
space

HI (02) := {u E H'(S2) : u = 0 on FD}. (6.1)

The variational function of (2.7), (2.8) with general A(x) is

u E HD(f2) : a(u,v) = e(v) Vv'E Hj,(f2) (6.2)

where the forms are defined by

a(u, v) := -(Vv, AVu)s + (v, u)g,
f(v) (S, v)S + (g, V)rN

The form a(., .) is symmetric and coercive, i.e.

a(u, u) > Ilull := e IlVull0,,I + IluI,2 > 0 (6.3)

if u A 0, due to (2.4).

The discretization of (6.2) is obtained by restricting u and v to FE sub-
spaces of Hj,(12): in order to achieve it, subspaces of continuous, piecewise
polynomial functions must be chosen. We have

UFE E S (-, , TFp) :

a(uFE,v) = e(v) Vv E (Sk0,(,T),Fp).

Here
Sj :Sk,' n HL.

Let N = dim{Sr 1 } and {fi : i = 1,. ,N} be a basis for St,1 Then (6.4) is
equivalent to the linear system

Ax = t

where the entries of the diffusion-stiffness matrix are given by

Aij = a(vi, pj) = a(ýpj, W), 1 < i,j < N

and the entries of the load vector f are tj = (Wj).

The diffusion matrix is symmetric and positive definite and must be eval-
uated by numerical quadrature of sufficiently high order, in particular if the
elements are curved, see [41], [65], [661, [67] and [46] for quadrature techniques
and error estimates.
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6.2 Mixed discretization

The continuity of the FE solution UFE in (6.4) is restrictive - in connection
with finite volume methods for convection dominated problems or discontin-
uous Galerkin methods it is desirable to admit discontinuous approximations
for UFE. To this end, the variational formulation (6.2) must be changed. We
write

-div q(Vu) + au = S in Q2, (6.5)

where the flux q is given by

q(Vu) = AVu in D2. (6.6)

We get the (dual) mixed variational formulation:
find u E L2((Q) and q E H(div, 2) such that n q = g on FN and

(v, au)s - (v, div q)s = (S, v) Vv E L2(p),
(6.7)

(u,V.p)s +(p,q)p =(f,n.p)FD VpEH(div,Q).

Here H(div, S2) is defined as follows:

H(div, S2) := {q E L 2 (f2)d : div q E L 2(2)}, (6.8)

where the divergence is understood in the weak sense.
The mixed FE discretization of (6.7) is based on subspaces Sk'O( 2 , T,

Fp) C L 2((Q) and Ski (J2, T, Fp) C H(div, 2); now UFE can be discontinu-
ous, but d components of the flux q must be discretized; the finite element
fluxes qFE must have a continuous normal component across element inter-
faces, but their tangential component(s) may be discontinuous.

The linear system corresponding to (6.7) has the form (for constant a)( M -B\(u\ (s
B T  CJ \q ~f (6.9)

where M is the L2-mass matrix of u, C is the mass-matrix of q and B,
BT correspond to the nonsymmetric forms of (6.7). In the conjunction with
an explicit time-stepping strategy, the spectrum of the matrix in (6.9) is of
interest. We have

(6.10)

= auTMu- uTBq+qTBTu+qT Cq

= auT Mu+ qT Cq > 0
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if a > 0, u : 0, q 5 0, i.e. the matrix has eigenvalues with positive real part,
if a > 0, so that this discretization is dissipative.

If a = 0, stability of (6.9) is not guaranteed in general. In this case,
we must require a compatibility condition of the spaces Sko and Skiv, the
so-called discrete inf-sup condition:

VO$uE Sko: sup (u, div q) > -Y IIU[oQ (6.11)

0OqESdIv Idiv qllo, -

for some y > 0.

An example of an element family satisfying (6.11) is the so-called discrete
Raviart-Thomas family (see [16], Chapter III for more).

6.3 Mortar-Discretization

The mixed discretization has the disadvantage that for each component u of
the flow field d additional fluxes must be discretized leading to a large number
of unknowns. Another approach is to use discontinuous u and to penalize
the interelement jumps by Lagrange-Multipliers on the element interfaces,
leading to the so-called Mortar Element Method (MEM). Some relevant
references are [11], [8] and, for the hp-MEM, [63].

We describe the MEM for the model problem

-div q(Vu) + au = S in S, (6.12)

u = 0 on FD,

n-q(Vu) = g on FN.

Here a > 0 and the flux q(Vu) is as in (6.6). Let T be a mesh in R built
out of regular patch meshes Tp, which are possibly irregular across patch
interfaces for K, K' E T with intersection FKK' of positive d - 1 dimensional
measure. In the MEM, we use the standard variational formulation (6.2) with
discontinuous u, v E Si5(0?, T, Fv).

The bilinear form a(.,-) must be reinterpreted then, since the H' (S) norm
is not defined for u, v E sD "

Broken Bilinear Forms and Spaces. We reformulate therefore (6.2) for

piecewise H'-functions on the partition T and set

H'(S?,T) := {u E L2 (S) : UIK E H'(K) VK E T}, (6.14)

equipped with the broken seminorm and norm

IUI',0,-r:= E IIVUIIK I UII,K (6.15)
KET KET
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To generalize (6.2) to u, v E we also introduce the broken bilinear form:
for u,v E H'(0, T), set

aT(u,v) := E(Vv, AVu)O,K + (VU)OK= Z aK(uV) (6.16)
KET KET

Variational formulation in broken spaces. We derive an analog to (6.2)
in broken spaces. Let K E T be any element. Multiplying the equation

-div q(Vu) + au = S in K

by v E H1 (K) and integrating by parts on K gives

e(Vv, AVu)O,K + a(U, V)O,K = (S, V)O,K + (v, n . qK)O,OK. (6.17)

To get a variational formulation of (6.2), we sum (6.17) over all K E T, giving

aT(u, v) = (S, v)o,g + 1 (v, nK qK)O,OK (6.18)
KET

where nK is the exterior unit normal to K E T" and qg - qgK. Denote
by the Skeleton Sint the union of all element intersections of positive d - 1
dimensional measure.

Sint = {e = Kn K' E E: K,K' E T, [ ds > O} (6.19)
and set J

SD:= {e E E: e C FD} (6.20)

where £ is the set of all d - 1 dimensional element boundary segments.
For the exact solution u of (6.2), the fluxes nK • q(Vu) are continuous

across edges e E Sint. The MEM for (6.12), (6.13) consists in enforcing the
vanishing of the jumps of u across e E Sint as follows:
find u E HL(S(,T), p E M such that

aT(u, v) + bT(v, pi) = (S, v)o,1 + (g, v)o,rN Vv E H (I, (6.21)

br(u, A) =0 VA E M.

Here b-r(u, A:= E ([U], A)o'e
eE~int

and [u] denotes the jump of u E H' (S2, T) across e E 8 int. The Mortar space
M is a multiplier space contained in I-ESit H-1/ 2 (e). Notice that by (6.18),
if u is smooth, the mortar p in (6.21) will give the canonical flux nK r q(Vu)

on e E Sint. Note also that (6.21) has saddle point form, similarly to the
mixed formulation (6.7).
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It is crucial for the stability of (6.21) that bT-(., .) satisfies a suitable inf-sup
condition; this is indeed the case, see e.g. [8].

The finite element discretization of (6.21) is as usual:
find UFE E s'° 0 (S?,T, F,), lIFE E Mk'O(S?,T):

aT(UFE,v) + bT(v, /FE) = (S,v)0,g + (g,v)o,rN Vv E S! 6°

bT(UFE, A) = 0 VA E M-. (

Here the additional mortar space Mk- enters, similarly to the flux-subspaces
Skiv C H(div, S2) in (6.7). Several choices for M•- are possible. However, care
must be taken that the forms bT(., .) satisfy a discrete inf-sup condition

inf sup - bT(v, A) > y(T, k) > 0 (6.23)
A EMk v ESk,O IIVI1,9,TIIAIIm

holds. For uniform degree k, the mortar space

M4- = {fA L2 (Sint) : Ale E Pk-l(e)} (6.24)

has been shown (for a fixed patch mesh TP allowing in particular also geo-
metric meshes) in [63] to have an inf sup constant 'y('T, k) >_ C(u) k- 3/4 in
two dimensions.

The usual theory of mixed methods (see e.g. [16]) implies then quasi
optimal error bounds for u as well as for the fluxes lFE.

Remark 6.1. Notice that the degree K of the mortar space Mk- in (6.24) is
one less than k in the domain - the lowest degree admissible is hence k = 1;
no variant of the MEM is known which admits k = 0 in the elements. In
comparison with the mixed formulation (6.7), the mortar method involves less
additional degrees of freedom - only fluxes on interfaces must be discretized,
rather than fluxes in the elements. Nevertheless, the mortar approach still
involves more DOF than the conforming method (6.4).

Implementation without fluxes. It is possible to eliminate the mortar
AfE, A from (6.22), thereby reducing the number of unknowns. The idea is
to restrict UFE and v E SE'°. If, for example, [UFE] = 0 and [v] = 0 on Sint,

so that UFE and v are continuous, bT in (6.22) vanishes and we get again the
symmetric formulation (6.4) (since then UFE, v E Sk 1) i.e. nothing new.

A second possibility not enforcing interelement continuity is use (6.24)
and to restrict UFE, v to

- I u E Sk : VeK,K' E Sint VO E CPk-I(eKK'):

KK ( u 0} (6.25)
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resp. more generally

Sk= : VeKK, ESi,,tVWEMk

KK1 ( -UIK_ ) (IeKK, ds = 0 (6.26)

where eKK, = K l K' for K, K' E T.

We observe that on any eK,K, the jump [u] belongs to Pk(eK,K'). The
orthogonality

I [u]wds V E Pk-l(eK,K,) (6.27)

consists in k = dim Pk-1 (eK,K,) constraints which are linear combinations of
the side degrees of freedom of uIK and UIK,. The condensed stiffness matrix
A can be written in the form

A = QT-diag {AK : K E T} Q (6.28)

where AK are elemental stiffness matrices corresponding to aK(u, v) in (6.16)
and the matrices Q contain the coefficients of the constraints (6.16). In iter-
ative solvers for Ax = b, (6.28) is never formed explicitly and, in particular,
the element stiffness matrices AK could reside on different processors during
the iterations.

It can be proved that the bilinear form aT(u, v) is coercive on Si5 and

hence the matrix A is positive-definite [11], i.e. the mortar discretization
(6.22) preserves dissipativity. Note however, that the coercivity constant re-
sulting from the proof in [11] depends on the triangulation in an unspecified
way.

Remark 6.2. We emphasize that the MEM presented here differs from the
one considered in [8], [9], [11], in that we allow here discontinuities on each
edge whereas the cited works treated the MEM as a variant of the domain
decomposition method where the number of subdomains coupled by the mor-
tar is fixed and mesh refinement with conforming elements takes place within
the subdomains. Clearly, the formulation presented here is more general and
closely related to FEM with Lagrangean Multipliers resp. to the global ele-
ment method.

Remark 6.3. Finally, we remark that the MEM with eliminated fluxes coin-
cides at least in one case with a known method: consider on T consisting
of triangles the space S 1,0 (2, T) of piecewise linear, discontinuous functions.
Choosing the mortar space M!- of piecewise constants on the edges, (6.28)
implies that the averages of the jumps of u E S"'6 over each edge must van-
ish - this element is just the Crouzeix-Raviart element. Here the matrix
is coercive independent of the meshwidth.
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6.4 Discontinuous Galerkin Method for second order problems

The DGFEM allows to discretize diffusion problems with discontinuous shape
functions without extra unknowns due to fluxes or multipliers. The stiffness
matrix is nonsymmetric but positive semidefinite which is desirable for ex-
plicit time stepping schemes.

Derivation from the Mortar Method. Closely related to the MEM is
the Discontinuous Galerkin (DG) method for the problem (2.7), (2.8). It can
be derived as follows: consider (6.21). Adding the equations, we get: find
(u,.u) E HL)(S?, T) x M such that

BT(u,I1;v,A) =f(v,A) V(v,A) E Hh(f2,T) x M (6.29)

where we set

BT(U, p; v, A) := aT(u, v) + bT(v, p) + b-(u, A),

f(v, A) := (S, v)Os + (g, V)0,rN

and where M is a suitable mortar space.
(6.29) is equivalent to (6.21) and its discretization:

find (UFE,/PFE) E Vr' such that

BT(UFE, /FE) = A(v, A) V(v, A) E Vk (6.30)

where
Vr : S0'°(f, T) x Mk'o(?2, T).

The discontinuous Galerkin FEM consists in eliminating a-priori the multi-
pliers AFE and A in (6.30) by the flux-averages: on eK,K' C Sint, set

1
/IFE = ý (qg- "nK + qK' nK) =: (q(Vu) ne) (6.31)

where ne is, for example, the exterior unit normal nK to the element K with
higher index (any other, fixed, choice of nK would do). Analogously, we select

A = -(q(Vv)- n,) on e E Sint (6.32)

and get the DGFEM: find UDG E Sk 0 such that

BDG(UDG, V) = ZaK(UDG, V)

K (6.33)
+ I j([UDGI(q(Vv)- he) - [v](q(VUDG)". ne) ds

eESint e

for all v E D S 0 . Here q(Vu) = eAVu, cf. (6.2).
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The minus sign in (6.32) is crucial - taking there plus gives a symmetric
bilinear form which is, however, indefinite - this property is very bad for
explicit time stepping schemes.

In contrast, the form BDG(',") in (6.33) is nonsymmetric, but positive
semidefinite, i.e.

Vu E H 1 (f2,T) BDG(U,U) =ZaK(U,U) Ž 0, (6.34)
K

i.e. (the real parts of) the eigenvalues of the corresponding stiffness matrix
ADO are nonnegative and the DG discretization (6.33) of the diffusion oper-
ator will be dissipative in an explicit time-stepping scheme, an observation
due to Oden and Baumann [49].

Stability of the IG-method. The stability of (6.33) is, to some extent,
an open problem. We prove here

Proposition 6.4. Assume that T is a quasi-uniform, shape-regular mesh on
S2 of meshwidth h and that there exists c > 0 such that

VK E TF Vu c H'(K) : aK(U,U) Ž CI1U 1 1,K (6.35)

and

VK E T Vu,v E H'(K): aK(u,v) • C-1 IJUhI1,KIjVI1,K. (6.36)

Define further on H1 (S2, 7") the broken norm

K

Then there holds

BDG (U, V)
inf sup F , > 0 (6.38)

5uESko OOvcSk,o IluIIT- IIVIT-

and

IBDG(U,V)I 1 C(k + 1)h-' IlulT IIvII'r. (6.39)

where C, y > 0 are independent of h and of k; they depend only on the
shape-regularity of the elements.

Proof.

1) Given u E Sk'° C H'(02,T), select v, = u. Then IIvuIIT = IluliT and

BDG(U,Vu) = BDG(U,U)=S7aK(U,U)

K
(6.35)

> c II(K) = C 7_.

K
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2) Let u, v E Sk,o. Then from (6.33) with e = 1 we get

IBDG(U,V)I - YE IaK(u,v)I + 1: II[u]llo,e II(n -" AVv)JIo,e
K e

+ E IIl'vllo,e II(ne AVu)llo,e
e(6.35)< C-' E II-II1,K~ll~ltl,K

K

+ C h-1 ,211u111,KUK' (k + 1)h-1/211V111,KUK,
e

_< C-1llull-r ITIllIr + C(k + 1)h-1 IIuIITr II.vlIr

where we used the trace inequality

IIUI02,e < C(IIVuIIo,KIIujIo,K + h 1 IIUI,K)

and, by (6.36),

line AVvIIO,e < IAVvllo,e < C(k + 1)h-1/ 2 IIVVIIO,K

Remark 6.5. Note that (6.35) rules out the case when we have pure diffu-
sion, i.e. the Laplacean. Then aK(u,U) = fK IVu12 dx and (6.35) is violated.
Moreover, in this case

BDG(U, U) = E K IVU12 dX 0 4== u E SOa(S2, T), (6.40)
K

i.e. the bilinear form BDG has a large kernel. Note also that for diffusion
problems resulting from implicit time discretization, (6.35) is usually satisfied,
see Section 11 below for more.

Remark 6.6. In one dimension an inf-sup condition (6.38) and continuity
(6.32) with constants independent of h and k holds [49] even in the absence
of an absolute term. In our case, the hp-error estimates of Section 5 apply
with a loss of (k + 1)h- 1.

Remark 6.7. The form aK in assumption (6.35) is as in (6.16), with E = 1.
Nevertheless, the argument in the proof goes through also for 6 < 1 if in the
definition (6.37) of the norm IIOIH1H(K) is replaced by E IOllK + I1oIIo,K.

Remark 6.8. In terms of computational efficiency, the DGFEM (6.33) has
numerous advantages over, e.g. the schemes in 6.2 and 6.3. For example,
since continuity is only weakly enforced, there is no need to code interelement
constraints any more. This, in turn, allows to modify the definition (4.5) of
the FE space in that the FE space on element K E T need not be defined in
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terms of parametric element mappings FK. Rather, we can in the DGFEM,
adopt the definition

sk'0(S,7-){u E L 2 (f) : UIK E PkK for K E TI,

i.e. the FE-spaces may be defined in local carthesian coordinates. Moreover,
even if K is a quadrilateral element, the local approximation space may be
Pk rather than Qk.

Remark 6.9. We have seen in Proposition 6.4 that in the hp-DGFEM we must
generally expect a loss of optimal convergence. It can be shown, however,
that this loss of convergence orders can be overcome by a stabilization via
penalization of the interelement jumps - a device going back to J. Nitsche in
1971. There, the bilinear form BDG (U, V) in (6.33) is modified by an additional
term to

BDGy(UV) := BDG(U,v)+ 'Ye [u][v]ds
eESint

where -ye > 0 is a stabilization parameter to be selected. The resulting method
has the advantage to be defined also for k = 0, i.e., for piecewise constants.
Judicious choice of -ye allows to recover optimal convergence rates in the
diffusive case ([37], Section 4). The price to be paid by the penalization of
the interelement jumps is a) increased stiffness and condition number of the
discrete problem and b) loss of elementwise conservation property.

7 Convection

Contrary to the reaction-diffusion case, the convection problem (2.9) and the
continuity equation (1.1) are first order, hyperbolic equations. Consequently,
the variational formulation underlying the hp-FEM will not be symmetric
any more and a standard Galerkin approach as in the reaction-diffusion case
is well known to have poor stability properties. This parallels the classical
instability of central differencing for the linear advection equation. To obtain
stable discretizations, some sort of stabilization must be introduced into the
variational formulation. We will discuss the following devices: a) streamline
diffusion techniques and b) discontinuous Galerkin approximations.

The streamline diffusion method was introduced by Hughes and Johnson
and their coworkers in the early 80ies in order to combat instabilities of CO-
FEM for advection-dominated flows [36], [38], [39]. It consists in replacing the
test function v in the Galerkin scheme by v + 6KLv where L is the advection
operator. The parameter 6 must be chosen in terms of the discretization
parameters, i.e. the meshwidth and, in hp-FEM, also in terms of the elemental
polynomial degree kK. This so-called stabilization parameter is at the disposal
of the analyst and can be adjusted in specific computations, but for each
element K E T there is a coupling to hK and kK which ensures the optimal
convergence rates for first order problems, both in h and k.
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7.1 Model convection problem

Let Q be a bounded curved polyhedral domain in IRd, d > 2. Given that a =
(a,. . ., ad) is a d-component vector function defined on S with ai E C1 (7),
i = 1,... , d, we define the following subsets of F = OS?

_F_={xEF: a(x).n(x)<0}, F+={xEF: a(x).n(x) >O0,

where n(x) denotes the unit outward normal vector to F at x E F. It is
assumed here implicitly that in these definitions x ranges only through those
points of F at which n(x) is defined; consequently, 1- and F+ are not nec-
essarily connected subsets of F.

For the sake of simplicity, we shall suppose that F is non-characteristic
in the sense that F_ U F+ = F.

The convection problem (2.9) takes the form

{Lu - a . Vu + bu = Sin f2,

u= f onF_.

for some b E C(77), S E L2 (2), f E L 2(F-).

This problem has a unique weak solution u E L 2 (Q) with a Vu E L2 (Q)
and the boundary condition satisfied as an equality in [H02 (F )].

In the next two subsections we shall formulate the hp-streamline diffusion
and hp-discontinuous Galerkin finite element approximation of (7.1).

7.2 The hp-SDFEM

The hp-SDFEM approximation of (7.1) is defined as follows:
find USD E Sk'1 such that

BSD(USD,V) := (JUSD, v + MLv) + (UFE,V)p_

=FsD(v)=(S,v+6,Cv)+(f,v)r_ VvC Sk'l (7.2)

where 6 is a positive piecewise constant function defined on the mesh trian-
gulation T.

In (7.2), (.,.) denotes the inner product of L2 (f2), and

(w, v)r- =1 a. nj wv ds,

with analogous definition of (-, ")r+ and associated norms 1.r_ and -I IIt+.

The stability of the hp-SDFEM is expressed in the next lemma.
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Lemma 7.1. Suppose that there exists a positive constant co such that

b(x)-1V a(x)Ž_co, xE!Y. (7.3)

Then USD obeys for 6 > 0 the bound

IIV6LUSDII2 + COIIUSDII2 + IIusDIISD + 2 IIUSDII

_< IIVFSI1 2 + 1 I1S112 + 211! •

Proof. Select v = USD in (7.2) and note that

(LUSD,USD) + (USD,USD)P-
1 - 112 (7.4)

= ((b- V v a) uSD,USD) + 1 IlUSDII• + 1 IIUSDI •-

Applying (7.3) here and using the Cauchy Schwarz inequality on the right-
hand side in (7.2) with v = USD, the result follows. 0

We observe that the bound in Lemma 7.1 controls the L2 -norm of the
discrete solution as well as some derivatives of it in the advection direction,
provided 6 > 0. We see that J = 0 gives only L2 -stability.

Now we turn to the error analysis of (7.2). We begin by decomposing

u - uSD =(u -1u) + (1u - uSD) (75)

where Hu is a suitable projection of u into Sk,1; the choice of the projector
H will be deferred until later. The key is a bound on ý in terms of 77; the final
error bound on u - USD will then follow from bounds on the projection error
7 in Section 7.4 below.

Lemma 7.2. Assuming that (7.3) holds, and that u E H 1 (R), we have

IIV•LCII2 + IIcMIl2 + 1 IIIlI÷ + IIl2
2 r+ (7.6)

<_ IIV•Ln - 7 nll2 + 41crlI2 + 211 11r+(

where c E C(S?) is defined by

c2(x)=b(x)- V.a(x), xEQ. (7.7)

For the proof, we refer to [36].
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7.3 Discontinuous-Galerkin hp-FEM

Given that K is an element in the partition T, we denote by OK the union of
open faces of K. This is non-standard notation in that 8K is a subset of the
boundary of K. Let x C OK and suppose that n(x) denotes the unit outward
normal vector to OK at x. With these conventions, we define the inflow and
outflow parts of OK, respectively by

iK = {x E OK : a(x).n(x)<0}, a+K = {x EaK: a(x).n(x)>0}.

For each K E T and any v E H' (K) we denote by v+ the interior trace of
v on 8K (taken from within K). Now consider an element K such that the
set aK\J_ is nonempty; then for each x E &_K\F_ (with the exception
of a set of (d - 1) dimensional measure zero) there exists a unique element
K', depending on the choice of x, such that x E 8+K'. This is illustrated in
Figure 7.1.

K' K

a

Fig. 7.1. A point x such that x E 8-K and x E 8+K'

Now suppose that v E H'(K) for each K E T. If iK fn _ is nonempty
for some K E T, then we can also define the outer trace v- of v on 8_K\_r
relative to K as the inner trace v+ relative to those elements K' for which
a+K' has intersection with OK\r_ of positive (d- 1)-dimensional measure.
We also introduce the jump of v across OK\F_:

[v] V+-

Let 6 E H1 (K) for each K E T, and suppose that 6 is positive on each
K E T. Typically, J is chosen to be constant on each K E T, although we
shall require this for now.
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Suppose that v, w E H1 (K) for each K E T. We define

BDG (W, V) =E Cw (v + Kv) dx
K (7.8)

f&K\r_(a n)[w] v+ds - E f (a n)u+ v+ ds
K f-\- K "Kr

and put

tDG(V) f Z fK(v + SICv)dx - • L_ n (a. n) gv+ ds. (7.9)
KJ K -Knr_

Note that the term 51v in (7.8), (7.9) is a stabilization parameter, for
J = 0, we get the usual discontinuous Galerkin method. The hp-DGFEM
approximation of (7.1) is defined as follows: find UDG E Sk'° such that

BDG(UDG,V) = £DG(V) VV E SkO . (7.10)

Next we study the stability of the discrete problem (7.10).

Lemma 7.3. Suppose that there exists a positive constant co such that (7.3)
holds. Then UDG obeys the bound

S IIV'6UDoI'K + cOIluDG IlK + E IIUD+G - UDGIIoK\r_
K K

+ S Ilu aIIa+Knr++ S IIUDGIaKnr_ (7.11)
K K

_< • IIV 6-fII2 + I IfJJ +2 JE gJ2--I Illog r<5 IK' K1 fI + 25 a111Knr-
K K K

The proof can be found in [36].

Remark 7.4. This bound is analogous to the estimate (7.3) for the hp-SDFEM.

We now discuss the error analysis of hp-DGFEM. We write

u - UDG = (u - 1u) + (Hu - UDG) (7.12)
_ q + 6 7.2

where THu is a suitable projection of u into Sk,°, to be chosen below. There
is an analog of Lemma 7.2:
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Lemma 7.5. Assuming that (7.3) holds and u E H'(K) for each K E T.
We have that

EI IVjLgII% +E~IICýII2 +EZ I+I&1 nr
K K K

+ •+ik OIKnf+ + 2 II Oi&K\1-
K K• K (7.13)
_<-L 7 l • : 1112 11 C 71112

K K

2 i+KnF+ IIIIK\r_
K K

The proof follows by elementary manipulation and we refer to [36] for
details.

7.4 hp-Error Analysis of the DG- and the SDFEM

In this section, we shall construct the hp-approximation projector H in the
error estimates (7.5) and derive hp-error bounds for the hp-SDFEM as well
as for the hp-DGFEM introduced in the previous section. The bounds are
explicit in h and p and in the regularities of the solution and allow to deduce in
particular exponential convergence estimates for piecewise analytic solutions.

We are now in position to present error estimates for both, the SD- and
the DGFEM. We shall use the following mesh dependent norm defined by

IIIUJI12 G : {IV Lt uti + IIcu112 + 11U+112 _•on
KET (7.14)

+1 JU12 +1 J+-U12
SIula+Knr+ 2 Ia- uII8K\F}.

Notice that for the SDFEM, the last term vanishes. Here is our main error
estimate for the hp-DGFEM.

Theorem 7.6. (Convergence rate of the hp-DGFEM)
Let S2 C IR2 and T, P be as in Section 2 with (possibly irregular) patch

meshes Tp, P E 1', consisting of shape-regular quadrilateral elements of de-
gree PK > 1. Select the stabilization parameters 6 K according to

6K = hK/kK for all K E T. (7.15)

Then
S(hK \

2
SK+l !P(kKSK)

111U - UDGIII'G <- C 2 k) k IlSK+l,k (7.16)
K

where C > 0 depends only on elemental shape regularity, and on the coeffi-
cients a, b, but is independent of kK, SK, hK and where 4(p, s) is as in (5.10).
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Proof. (7.12) and Lemma 7.5 imply

IIIU - UDGIIIDG < III'fl0IDG± "IlIIIIDG

(7.13) 2 2_<- jjjnIIID + ( 16'L q - -2 K, +2 K•l ll)
K K

+I I+ ( 12 + 11 7+I1a+Knr+) +( II-7II&F)
K K

2 2

<5 (zIjj!Iqj2 + (ZIjC7,I2)1
K K

1 2 (1 1

± ( II+InIlr )ý + a (ZI I +Kno+)
K K

1 (11

+ 72= (K II71 aIK\F-)2
K

2 - 1 2 E JC7 1 2

+ (E II'qllK + I6 -qllK) + 2 (5 +C2 )K
K K

+42 va( I++KflF) + (E 1177-11a K\r )
K K

<5 C{ 5IEj IVqlII2( + 11I77I12 + II1II11 + j-12117711
K

+5I1 1+Knr, + I -lIKnl'
K

+ 1171-112 K~ + 11,q+11_2 r_}•
+ a-IK\r- -Kr

C(A+B)1.

where C depends on (a, b).

We select r7 = u - flu with 1 as in Theorem 5.4. This gives the bound

A < E (hK) 2 8K(kK, SK)( 6K + 6-1 h2 kg )IuI.K+l,•

K

To bound B, we must estimate II, Wsn2
111711ooKC We use the inequa lity

l2~[•(OK) <- C (JIV771IIgl71lK + hgK1 KI•: VK ET



hp-FEM for Fluid Flow Simulation 381

and obtain the bound

B c~ (hK )SK ~ 2I (hK)sK+l1 ~)PilIaIB-<- u'fpg, SK)" 1 - -) O'PK, SK)2p-1us+,^

K

hK- ) 28 pK +2 )p j21ij2

-C (hK )
2

8'K+l 1 ~ -(Ks) 1±p 3 )I+l R.
K

Selecting 6 K as in (7.15) concludes the proof. El

An analogous error estimate holds true for the hp-SDFEM.

Theorem 7.7. (Convergence rate of the hp-SDFEM)
Let f2 C IR2 and T, P be as in Section 2 with a 1-irregular mesh con-

sisting of shape-regular quadrilateral elements of degree PK >_ 1. Select the

stabilization parameter 6 K as in (7.15).
Then there holds the error estimate

IIIU--US DIID < C E (hK)
2

8K+l l'(kK,SK) i2I+IK (7.17)

K kK

where wr IIIu111 := IIVrLio + IIcU1i1 + 1 II÷ + IIuI12

and
0<_SK5kK VKET,i =uoFp if KETp

and i(k, s) is as in (5.10).

Let us discuss special cases of the above, general error bounds.

Remark 7.8.

1) If kK = k is fixed, and hK = h -+ 0, (7.16) is optimal in h.
2) As s is fixed, kK = k -+ oo, Stirling's formula implies

4i(k, s) < C(s) k-2,

and

IIIU-UDGIIDG - CK ( )
2K 1 1fi 1 1 .+,

The bound (7.16) is optimal also in k, improving upon [12], [13].
3) If u is patchwise analytic, we have the bounds

VK E T 3dK > 1, C > 0 Vs > 0 : ]fil s ,k -• C(dK) s 8! (7.18)
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In this case, we get the exponential convergence estimate [36]

IIIU - UDGIIIDG < C : (h-) 2-K+l (kK) 2 exp(-2bKkK).
K

By Theorem 7.7 an analogous bound holds also for the hp-SDFEM on quadri-
lateral, possibly 1-irregular meshes.

8 Convection-Diffusion

Based on the discretizations of the diffusion operator in Section 6 and of the
advection problem in Section 7, it is now easy to derive discretizations of the
convection-diffusion problem

£eu = -EAu + a(x). Vu + b(x)u = S in!f, (8.1)

u=0 on 0fl. (8.2)

Here the viscosity e E (0, 1], f E L2 (S2) and a(x), b(x) are assumed to belong
to C1 (f) and to satisfy (7.3).

8.1 Standard Galerkin discretization

The standard Galerkin discretization of (8.1) reads:
find u E H01 (Q) such that

B , (u, v) : = e (Vu, Vv) n (8.3)

+(a. Vu + bu, v)s = (S,v)s2 Vv E H(). (8

The Galerkin finite element discretization of (8.3) reads:
find UFE E Sý'"(ST) such that

Be(UFE, V) = (S,?v) Vv 1 s'(S, T) . (8.4)

Condition (7.3) guarantees the solvability of (8.3), (8.4), since, for u G Sok," (S, T)
it holds

B,(u,u) =e I1Vull 2 + J(a . Vu + bu) udx

=elIVU112+J(b-V a) U12 dX (8.5)

> e IlVul12 + Co JIul12

> min(l, Co) IlU11
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wherewe used the formula

J2ua.- Vudx = -IJu 2V -a-faua -Vu +Jfg u 2 a -nds

We see that (8.4) is stable in the 11 o IIk-norm, whence it follows that

IIU - UFEIle < C Iu - vIlI Vv E So' 1(S?,T) . (8.6)

The Galerkin FEM (8.4) without stabilization converges therefore optimally,
provided the FE-space S;' (2, T) resolves the fine scales of the solution (such
as boundary layers, eddies, fronts etc.). If this is not the case, the Galerkin
FEM (8.4) is prone to pollution, i.e. a local underresolution of fine solution
scales triggers oscillations which spread throughout the domain 2.

To prevent this, stabilized schemes must be used (in fact, the main impetus
for the development of stabilized methods has come from the inability of the
FEM to resolve all small scales of the flow). We present here two stabilization
techniques, the hp-SDFEM and the hp-DGFEM.

8.2 Streamline-Diffusion FEM

Formulation and main properties. The hp-SDFEM discretization of
(8.3) reads: find UFE E S0'l(02,T) such that

BSD(UFE,V) = FSD(V) Vv E S0' (0,T). (8.7)

Here the bilinear form and the right hand side include the so-called stabiliza-
k,1tion terms: for u E S0 ' (S2, T), we have with 4, as in (8.1)

BSD(u,v) := B,(u,v) + E 6 K (I u)(Lov)dx,.8)
KET

FSD(V) := (S,v)s S?+ 56K f S(oV) dx .(89)
KET

Remark 8.1. At first sight, it would appear that the stabilization terms in
(8.8), (8.9) require, for positive e, H 2 (K)-regularity of u. This is not so - all
that is required for BSD, FSD to make sense is that C4u G L2 (K), and this is
satisfied for the exact solution if S in (8.1) belongs to L2 (K) for all K E T.

Remark 8.2. The SDFEM formulation is fully consistent, i.e. for any value
of E and 6, the exact solution of (8.1) satisfies (8.7). Adding the stabilization
terms on the right hand sides of (8.8), (8.9) therefore does not alter the
problem to be discretized.
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Remark 8.3. As in the pure convection case, the SDFEM contains free pa-
rameters 6 K at our disposal; for JK = 0, (8.7) reduces to (8.4), JK > 0 will

imply stabilizations. JK needs to be selected in dependence on kK as well as
on the element shape - this will be explained below. Proper choice of 6 K is
crucial for good performance.

Remark 8.4. We see that for e = 0 the SDFEM (8.7) becomes (7.2). All
properties are shown below for the SDFEM.

e=1e-08; a=l; b=0; f(x)=exp(x) 1 =le-08; a=1; b=0; f(x)=exp(x)
100 100

L2 SDFEMii H1 SDFEM II

SL2 Gaerkij H1 Galerkin

10-2 -2

10", : . .1 -

104 . 0

10-1o 10-10

10- 10

0 20 40 60 0 0 40 60
DOF DOF

Fig. 8. 1. L 2 and energy performance of "two-element mesh" for Calerkin FEM and

SDFEM, 6 = 10-8s;

Stability. As we pointed out in Section 5.3, the solution of (8.1) exhibits

for small E > 0, boundary layers and hp-FEM will not give exponential

convergence uniform in e if unstructured, shape regular meshes are used

(no layers are present for e = 0, i.e. for the pure convection problem). We

therefore address now the choice of the parameters 6K in (8.8), (8.9) and the
stability of the method. We assume that the mesh T in (8.7) is given in terms

of patches P E P, regular patch maps Fp :k:--4 P and allow patch meshes

Tp with anisotropic quadrilateral elements, of the type introduced in Section

5.3. Then there holds:
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eps=l.e-4, f=exp(x)104 I ,

..... GalerkinSD E

10 "

0II

...... .......... ...................
.........................................

10,

0 20 40 60 80 100 120
DOF

eps=l.e-4, f=exp(x)

SDFEM......... Galerkin

-. 10I

1 . "..... 
......

0 20 40 60 80 100 120
DOF

Fig. 8.2. L2 and energy performance of p version on uniform mesh with h = 0.5
for Galerkin FEM and SDFEM, 6 = 10-4

Theorem 8.5. Let the mesh T consist of shape regular triangles of diameter
hK or of possibility anisotropic quadrilaterals with sidelengths hK,max and
hK,min , respectively (no bound on the aspect ratio hK,ma. /hK,min is assumed).
Then there exists 6 0 > 0 independent of hK, k and of the aspect ratio, such
that for all 0 < 6 < b0 the choice

= 6 hK,max hK,min (8.10)
K hRmax + h 2m

will render the hp-SDFEM (8.7) stable independent of the aspect ratio, i.e. it
holds

L IuI 'ID < BSD(UU) Vu E S;'1(01,T) (8.11)

where the norm 11o IISD is defined by

IIuI12n := , IIVuIIo•,, + IIu112,,, + E3 6KIILO•uIIo,K
KET

For the proof, we refer to [28].
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101 Ieps=I.e-4, 
f=exp(x)

I SDFE

......... Galerkin

S ... ................................................

0 20 40 60 80 100 120 140
DOF

eps=l.e-4, f=exp(x)
101

SDFEM
Galerkin

10-4 60 0 100 120 140

DOF

Fig. 8.3. L 2 and energy performance of p version on uniform mesh with h = 0.5 +
small element size e, 6 = 10-4

Note that for shape-regular elements hg,max = hg,min --- hg and (8.10)
becomes simply2 6K = 6 hK/kKg (8.12)

which should be compared with the choice (7.15): we see that the appearance
of the viscous terms changes the weight 6Kg from hg/kK to hg/k 2g, at least
as far as the stability analysis is concerned.

Remark 8.6. The previous Theorem applies in particular also to the (r., a)-
geometric boundary layer meshes shown in Figures 8 and 9.

We shall see in Section 10 below how stabilized formulations like (8.8),
(8.9) can also be used in the computation of incompressible fluid flow.

Computational Experiments. In this section, we illustrate the perfor-
mance of the hp-SDFEM (8.7) with numerical examples for 1-d convection-
dominated problems. All findings which we report below are mathematically
explained in detail in [47]. Our aims in these numerical experiments are

1. to illustrate the theoretical results obtained above, in particular the abil-
ity of the hp-FEM to resolve very narrow fronts and layers, leading to
the asymptotic exponential convergence with few degrees of freedom;
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error in first element: eps=l.e-4, f=exp(x)

.. SDFEM
... Galerkin..... , .

102
e0 ....................

10,

0 20 40 60 80 100 120
DOF

04 eps=l .e-4, f=exp(x)104

Ct.............

2102

S~SDFEM
- 1 ........ G1ler0n

10'
0 20 40 60 80 100 120

DOF

Fig. 8.4. L2 and H1 performance on the first element ofp version on uniform mesh
with h = 0.5, e = 10-4

2. to compare hp-SDFEM and hp-Galerkin FEM in the preasymptotic phase,
i.e., if the small scales of the solution are not resoled. In particular, we
will see that the appropriate choice of mesh sequences lead to robust
exponential convergence on compact subsets for the hp-SDFEM.

We consider two types of problems, a standard advection-dominated problem
and a turning point problem which satisfies the crucial assumption (7.3).

The boundary layer case. Let us first consider the problem

-eu" + au' = ew, u(±l) = 0, w = 1, a = 1 (8.13)

The exact solution has a boundary layer at the outflow boundary x = 1 and
is given by

ew WX C
u, w(a e) + -a+ e-1x)/ (8.14)

ae-" 1 -- e 2e e-2a/E

C wi(wE-a) 1 e-2a/ = 0(1),

e-W(e2 - 1) (8.15)
"= w(we - a)(1 - e-2/e) = 0(1).
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10, Ierror in first element: eps=l.e-4, f=exp(x)

100. ....

2 SDFEM
2 . Galerkin

10-4
0 20 40 60 80 100 120 140

DOF

eps=l .e-4, f=exp(x)
... .... ................................. .................... .........

Ci SDFEM
1 0o ........ Galerkin

0

10-2

0 20 40 60 80 100 120 140
DOF

Fig. 8.5. L2 and H1 performance on the first element of p version on uniform mesh
with h = 0.5 + small element size E, E = 10-4

Note that both IjueIL2c(S) and 111u.111 are 0(1) independently of E.

Global SDFEM performance. We present numerical results for the SD-
FEM. In order to illustrate the robustness of the SDFEM with respect to
the weights (6i)iy=1 noted in Section 8.2 we choose the weights (6i)i' 1 of the
SDFEM as

[ 1 hi if Ek 2 /hi <•-
6i 2=

otherwise.

We point out that numerical results are practically identical if the choice is
made.

In our first series of numerical experiments, we resolve the boundary layer
with the two-element mesh of (5.21) with n = 1. Fig. 8.1 compares the
behavior of the Galerkin and the SDFEM in the L2 norm and the energy
norm I111-11 (which is V"61• IH'(S?)) for e = 10-8 where the order k ranges
from 1 to 27. The theory of [47] yields robust exponential convergence in the
energy norm for the SDFEM as well as the Galerkin FEM on this two element
mesh. This exponential convergence is visible in the bottom figure of Fig. 8.1.
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global error; eps=l.e-8, a=l, b=0, hp versions, q=0.Serror in H1 semi norm ; eps=l.e-8, a=1, b=0, hp versions, q=0.5

108 ,10,

L2Galerkin] - H1 Galerkin
10. L2 SDFEM- Hi SDFEM

102

101

i CFi

10°

10"C

10-10-I 0-

10-12 10'10-4o

1 0 "1 0

0 5 10 15 20 25 0 5 10 15 20 25
P P

Fig. 8.6. L2 and energy performance for "hp"-mesh; SDFEM; a = 0.5, E = 10-8

Furthermore, for the SDFEM, we have robust exponential convergence in
LOO and thus in L2 (cf. the top figure of Fig. 8.1); we also observe robust
exponential convergence in L2 for the standard Galerkin FEM, Fig. 8.1. We
note that the qualitative behavior of the schemes is comparable although the
error of the hp-SDFEM is slightly smaller than that of the Galerkin FEM for
this problem.

We conclude that the two-element mesh scheme is able to resolve the
boundary layer at the outflow boundary and that no stabilization is required
in this case.

Our next experiment is geared towards getting insight in the behavior of
the Galerkin method and the SDFEM if the boundary layer has not been
resolved. To that end, we consider the performance of the p version on a
uniform mesh with h = 0.5 (i.e., 4 elements). Here, the order k ranges from
1 to 27 and = 10-4 . Fig. 8.2 shows the behavior in the L2 and the energy
norm .1"1-1. The error in the hp-SDFEM is considerably smaller than that
of the Galerkin method, but the rate of convergence SDFEM is very poor
also-in the energy norm, no convergence can be observed!

Finally, Fig. 8.3 shows the performance of a uniform mesh (h = 0.5) aug-
mented by one small element of size e in the outflow boundary layer (i.e., the
mesh given by the nodes {-1, -0.5,0,0.5, 1 -e, 1}). As to be expected, insert-
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error in first element; eps=l.e-8, a=1, b=O, hp versions. q=0.5rror in first element; eps=l.e-8, a=1, b=O, hp versions, q=0.5
10 1010

L2 Galerkin - Hi Galerkin
L2SDFEM - Hi SDFEM

100
101

E

10,

E \

'0 0
.-10 E

-J"\

S' 10-10"

\10-10

lo-, ' \ '

10 -1~ - - - - -- - --

10 2010F
0 5 10 15 20 25 0 5 10 15 20 25

p p

Fig. 8.7. L2 and H' performance on first element (-1, 0) for "hp"-mesh; SDFEM;
a = 0.5, E = 10-8

ing one small element of size e greatly alleviates the problems of the standard
Galerkin method (cf. [47] for a detailed analysis). Comparing Fig. 8.2 with
Fig. 8.3, the error of the Galerkin FEM is reduced by two orders of magnitude.
Nevertheless, both the Galerkin method and the SDFEM yield poor rates of
convergence as the p version on a mesh with one small element of size e near
the boundary cannot resolve the boundary layer properly. Hence, comparing
the results with those in Fig. 8.1, we see that the proper element length ek
at the boundary is essential for the boundary layer (compare Theorem 5.15)
resolutions as well as for robust exponential convergence.

Local p-SDFEM performance - pollution. We have just seen that the
pure p version Galerkin FEM and SDFEM have poor convergence properties
if the error is measured in a global norm such as the L2 or the 1I.1-'1 norm. The
performance was not substantially improved by inserting one small element
of size e in the layer. The local behavior of the pure p-version SDFEM is
investigated in Figs. 8.4, 8.5 by plotting the relative L 2 and H 1 errors in the
first element 11 = (-1,0) for a uniform mesh with h = 0.5 and a uniform
mesh with h = 0.5 that is augmented by one small element of size e in the
layer. Although the SDFEM, which suppresses spurious oscillations, is much



hp-FEM for Fluid Flow Simulation 391

eps=l.e-B, 3 etem., div. turn. pt prob?., f=W
10o

Slo-s

10

0 10 2'0 30 40 50 6'0 7'0 80
DOF

eps=l.e-8, 3 elem., div. turn. pt probi., f=W
10o S.... '- S D F E M• I........ Galerkin

10-1

1 101 0 10 20 30 40 50 60 70 80

DOF

Fig. 8.8. L2 and energy error for turning pt. problem, a = 1, e = 10-3, 3 elem.

more accurate (1% in both L2 and H 1 on (-1, -0.5)) than the Galerkin FEM,
we see that increasing the order k does not reduce the error. We conclude
that the pure p-version of both the Galerkin FEM and the SDFEM are prone
to pollution, i.e., the error introduced by not resolving the boundary layer
affects strongly the accuracy achievable in the whole computational domain.

Local SDFEM performance on special mesh sequences. Our next
numerical example shows that the hp-SDFEM leads to robust exponential
convergence on compact subsets not containing the layers if an increase of
the polynomial degree is combined with a mesh refinement towards the layer.
We therefore consider the following scheme: For a grading factor o E (0, 1)
let

ko E IN be the smallest integer s.t. ork < koe

and let for each polynomial degree k a geometrically refined mesh with p
layers be given by the points

{-11, 1 - aIi = 0,..., min (k, ko)}. (8.16)

On such meshes, we will consider as trial spaces the space S; M(T) (cf.
Fig. 8.10). We note that such mesh sequences would typically be generated
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eps=l.e-8, 4 elem., conv. tum. pt probl., f=W

-10

10,

0 20 40 60 80 100 120
DOF

eps=l.e-8, 4 elem., conv. turn. pt probl., f=W
107

SDFE
10-' ........ Galer i

a 10-

0 20 40 8100 120
DOF

Fig. 8.9. L2 and energy error for turning pt. problem, a = -1, 6 = 10', 4 elem.

by adaptive schemes that locate and try to resolve the layers. It can be shown
using ideas of [40,75] (cf. [47] for the details) that the hp-SDFEM converges
robustly and exponentially on compact subsets of f? for such mesh sequences:

Theorem 8.7. Let a = 1, b = 0, a E (0, 1), ý E (-1, 1) be fixed. For k E N
consider the meshes T defined by the nodes (8.16). Assume that the weights
(6j)' )1 are of the form (8.12). Then there are constants C, b > 0 independent

of e, k such that

Hue- USDIIH1(-1,6) < Ce-bk, k = 1,2,...

The refinement factor a is chosen in the following experiments as a = 1/2
and the weights (bj)ý= 1 are given in both cases by

1 hi i 1 hi
= i k< - (8.17)
0 otherwise.

Again, we point out that choosing the weights (6)N' as in (8.10), (8.12))
leads to similar numerical results. For e = 10-8 and k going from 1 to 22.
Figs. 8.6- 8.7 show the performance of the SDFEM in comparison with the
Galerkin FEM. Fig. 8.6 depicts their behavior in global norms (L2 and energy
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norm) whereas Fig. 8.7 shows the relative error (measured in the L2 and H1

norm) in the first element I, = (-1, 0). Fig. 8.6 illustrates once more that
both Galerkin FEM and hp-SDFEM do not lead to convergence in the energy
norm until the layer is resolved, that is, ok ; ek (for a = 0.5 and e = 10-8

this happens for k P 22). The behavior of the Galerkin FEM is, however,
completely different from that of the hp-SDFEM if the error on the first
element I = (-1, 0) is of interest (cf. Fig. 8.7). The Galerkin FEM is highly
prone to pollution: The local error in I cannot be controlled until k is so
large that the smallest element in the layer has width ao k kE. In contrast to
this, the SDFEM is pollution-free as robust exponential convergence on the
compact subset (-1, 0) can be achieved according to Theorem 8.7 and in fact
is visible in Fig. 8.7.

Turning point problems. Let us now consider a problem with a turning
point at x = 0. We consider

-Eu' + axu' + u, = 1, on (-1, 1), a = ±1 (8.18)

u,(:l) = 0 (8.19)

In the case a = 1, the exact solution has boundary layers at both endpoints
±1; for a = -1, the exact solution exhibits an internal layer at the turning
points x = 0. The exact solutions are given by

ue(x) = 1 -exp {(x 2 - 1)/(2E)} for a = 1 (8.20)

u (x) =1- cxerf(x/V2) - V'7NCiF exp{-X 2 /(2E)}

for a = -1

c := (erf(1/v•e) + v/2'-/77exp (-1/(2E)))-1 ;, 1 (8.21)

for small e

erf(x) := exp(-t 2)dt, erf(x) -+ 1 forx -+ oo

Equation (8.18) satisfies the crucial assumption (7.3) and the fact that
the coefficient a is a polynomial allows us to modify the arguments as to
accommodate the case of (8.18) as well. For the SDFEM we use the weights
(8.10), i.e.

1 hi
- 4 k 2 '

The solution given by (8.20) (i.e., the case a = 1) has two boundary layers at
both endpoints with length scale O(E). The structure of the boundary layers
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is essentially of the form analyzed in Section 3.2 so that the approximation
results with the "two-element" meshes introduced apply. In fact, a "three-
element" mesh consisting of two small elements of size kE at the boundary
points and one large element in the middle (that is, the mesh is given by the
points {-1, -1 + kE, 1 - kE, 1}) is well-suited to resolve the layers in both the
Galerkin as well as the SDFEM (cf. Figs. 8.8 where 6 = 10-8).

In the case a = -1, the solution is given by (8.21) and has an internal
layer of width O(,/F). Again, the "two-element" mesh in Theorem 5.14 can be
applied successfully for the approximation of the internal layer if at least one
element of size O(k.-fr) is introduced at the turning point x = 0. Figs. 8.9
show the performance of the Galerkin FEM and the SDFEM for a "four-
element" mesh based on the points {-1, -kvl/, 0, kV/r, 1} and e = 10-8. Al-
though the error graphs do not behave monotonically, the overall convergence
of the "four-element" hp-SDFEM shows exponential convergence rates.

Conclusions on hp-SDFEM for convection-diffusion. From our nu-
merical experiments we conclude that some mesh refinement in the layer is
indispensable for proper performance (in a global norm) of both, hp Galerkin
FEM and hp SDFEM; in this case, both methods perform comparably well.
If, however, the length scales of the solution are not completely resolved, the
hp-SDFEM is considerably more robust than the Galerkin FEM in the sense
that it effectively suppresses spurious oscillations in the pre-asymptotic range
of convergence, and that its asymptotic convergence rate is very close to that
of the best approximation.

A successful strategy in more complicated settings will therefore combine
mesh adaptation at low p with SDFEM stabilization in the preasymptotic
range in order to locate the layers/fronts. Once the layers/fronts are located,
our mesh design principles based on the "two-element" mesh can be success-
fully applied to resolve the layers.

In this pre-asymptotic range, when the layers/fronts are still to be located
by some adaptive scheme the hp-SDFEM leads already to robust exponential
convergence on compact subsets "upstream". The pure Galerkin FEM on the
other hand does not produce reliable results anywhere in the computational
domain until the layer is resolved.

We emphasize that we investigated here only one-dimensional linear prob-
lems where very precise regularity properties of the solution are available. The
stability analysis of the hp-SDFEM, however, did not exploit these proper-
ties so that similar findings will likely hold also in two- and three-dimensional
situations. The main conclusion which can be drawn from the numerical ex-
periments is that localized small scale phenomena of viscous flow can be
resolved with moderate computational by hp-FE discretizations and that the
hp-SDFEM can perform very satisfactorily in an adaptive environment.
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Fig. 8.10. Geometric sequence of meshes generated by successively halving the
rightmost element

9 Elasticity

We have concluded now the presentation of the basic hp-FE discretization
techniques for the scalar model problem (2.1) and turn to the system of
Navier-Stokes equations (1.1) - (1.3). Equation (1.1) is hyperbolic and of
the convection type considered in Section 7, whereas (1.2) and (1.3) are of
nonlinear convection-diffusion type. In particular, (1.3) is a scalar, nonlinear
convection-diffusion problem of the type treated in Section 8. Here, we focus
on the momentum equation (1.2) which we approach from the "elliptic" right
hand side.

9.1 Basic equations

In the absence of advection and transient effects, (1.2) reads

a- -T j = S, in S? (9.1)
1&xj

(here and in what follows, indices run in the set {1,... ,d} and Einstein's
summation convention is used).

The stresses Tij must be related to the velocity field ui by a constitutive
law. In a Newtonian fluid, the stresses depend on the symmetric velocity
gradient

Dij(u) := -1 ( -au + axi/ , 1 <_ i~j :! d. (9.2)

If the medium is homogeneous and isotropic, -r and D are related by Hooke's
law, i.e.

jj (u) = y(div u)Jjj + 2/ Dij (u) (9.3)
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where y and p are the so-called Lam&-coefficients. Experimentally, we always
have

p _> 0, y + 2p/d > 0 in IRd. (9.4)

For most Newtonian fluids and gases, experimental evidence indicates that
7 + 2p/3 is very small, it is therefore set to zero for many common fluids. We
shall see in Remark 9.2 below that this may be problematic.

If -y = u = 0, we see from (9.3) that the equation (1.2) becomes inviscid,
since r = 0. In the compressible Navier-Stokes case we will assume here

p > 0, -y+ 2,u/d > 0.- (9.5)

Then the right hand side of (1.2) will be dissipative as well, see Proposition
9.1 below.

9.2 Variational formulation

The variational formulation of (9.1) is obtained by integration by parts with
the Green formula

-(v, divr(u))s = 2(ID(u), D(v))o

+ (-ydivu,divv)s? - (v, r(u)n)a(9 .

We impose Dirichlet ("no-slip") boundary conditions

u=0 on FD (9.7)

and Neumann ("flux") boundary conditions

r(u)n = g on FN. (9.8)

Using (9.1) and (9.8) in (9.6), we get the standard variational formulation:
find u E Hji((?)d such that

E(u,v) = F(v) Vv E Hj((2)d (9.9)

with the elasticity bilinear form given by

E(u,v) := 2(yD(u), D(v))s + (ydivu, divv)s

and
F(v) := (S, v) + (v, g)a2 .

The term div r(u) on the right hand side of (1.2) is dissipative, since there
holds

Proposition 9.1. Let S? C IRd be a bounded Lipschitz domain and assume
that 1 D C OS2 satisfies fro ds > 0. Assume further that -y, a are constant in
Q. The right hand side of (1.2) is dissipative, if and only if (9.5) holds.
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Proof. If fr D ds > 0, there exists C(2, FD) > 0 such that Korn's inequality
holds

Vu E Hl(Q2,FD)d: IID(u)IIL2(S) _Ž CIIUIH,(i ) . (9.10)

Writing a = trace (D(u)) and defining the deviatoric part Do(u) :=D(u)-
a 1, we get

E(u, u) = -y Ildivull' + 2pz(D(u), D(u))s?

= 2plIDo(u)Il1 + (2p + yd) dllal 1

where we used that

IID(u)IL(sc) =-(D(u), D(u))s = IIDo(u) S? + d IlaII0

Hence we get
E(u, u) _> min (2p, 2p + -yd)IID (u)l S•

Korn's inequality and (9.5) imply the assertion. 0

Remark 9.2. In the case of a monatomic gas, p > 0 and

-y + 2pz/d = 0

(Stokes' relation). The dissipativity of div r-(u) in (1.2) is then not clear.

The FE discretizations of (9.9) are analogous to those of Section 6 and
we present them here.

9.3 Standard continuous discretization

It reads: find UFE E S~kl(2, T, Fp)d such that

E(UFE,V) F(v) Vv E Sk'(/2,T,Fp)d. (9.11)

9.4 Dual mixed formulation

Again, to accommodate discontinuous velocities UFE, a mixed formulation
is useful. Now the flux is simply the stress tensor r(u). The mixed form of
(9.1), (9.7), (9.8) reads

-divr = S in S2,

"r = CD(u) in (2,

u=0 OnFD,

"r(u)n = g in FN,
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and in weak form: find r E H(div, 02), u E L 2 (Q2)d such that, assuming (9.5)
holds,

(C-'r,o), + (u,divr)g = 0 Va E H(div,Q2), (9.13)

(v,diva')s= (S,v)s7+(g,v)rN VvEL 2 (f2)d.
Here H(div, fl) := 17- E L2(.O."' :dxd L2f2

H{r ,sym: divi E L2(f2)d} and C-' is the inverse
of the elasticity compliance tensor.

The construction of finite elements which are H(div, f2) conforming and
stable for (9.13) is delicate. Some 2-d examples can be found in [16], Chapter
VII.2. Note that in IRd in the mixed formulation (9.13) d(d + 1)/2 additional
fields have to be discretized; for elasticity problems with discontinuous UFE,

the incentive to consider mortar resp. DG-FEM is therefore even higher than
for scalar advection-diffusion problems. Moreover, the discretization tech-
niques for the scalar case carry over to large extent. We therefore do not
recommend discrete versions of (9.13) in fluid flow simulations, and turn to
the mortar and DG methods.

9.5 Mortar Discretization

Basic Discretization. We use the notation of Section 6.3 and proceeding
analogously we arrive at: find u E HD(SQ, T)d, jL E Md such that Vv E
Hl(f2,"T)d, VA E Md

ET-(u,v) + 0-r-(v, ti) = (S,v)o + (g,v)rN (9.14)

0T(U,A) =0 .

Here the broken bilinear forms are given by

ET(uv) := ZEK(uv) = Z (CD(u),D(V))K,
K K

eES•- t

The discretization of (9.14) is analogous to (6.22): find UFE E SE0 (f2,-T')d

and lIFE E Mk'°([, T)d such that Vv E sk'0(S?,T7)d, VA E Mk'O(f2, T)d

ET (UFE,V) + -T(V, IL) = (S,v)g + (g,v) N (9.15)

!T-(UFE, A) =0 .

The structure of the linear system corresponding to (9.15) is analogous (6.9).
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Implementation without fluxes. Assume that the polyhedron S? C IRd is
partitioned into a regular triangulation T of simplicial elements K. We con-
sider (9.1), (9.7) and (9.8) and assume the polynomial degrees k are uniform
and equal k > 2. Let Sint denote the set of all d - 1 dimensional simplices
eKK, which are interfaces of K, K' C T. Then we have, analogous to (6.25),

(SIzk,)d = {ud

LIK , [u ]. W s =o V p p k l(e )d (9.16)

The matrix A is the stiffness matrix of the form ET(u, v) on (Sd)d x (S ')d.

And it holds that A is symmetric, positive definite, if k > 2 and if (9.5) holds.
To see it, assume that 0 = ET(u, u) for some 0 5 u E (Sk,6)d. Hence we

get
0=ET(U, u) >: min{2/p, 2pz + -yd} E [ID(u) K•

KET

which implies that uIK is a rigid body motion, i.e.

VKET 3AK=-A/T, bK: UIK = AKX + bK

If K n FD 5 0, then ulK = 0 in these K.
Further, u = 0 in the remaining elements K E T, since

VeKK' E Sint : I [u] "c ds = 0

for every Wo E Pl(eKK,)d, due to k > 2, and since [u] is linear on eKK'.

Therefore ET-(u, u) = 0 ==ý u = 0 and A is positive definite, hence this
discretization of viscous stresses is dissipative. Notice that in the scalar case
in Section 6.3 the above argument works even for k > 1, since the "rigid body
motions" are piecewise constant then.

As in Section 6.3, the hp-MEM can be implemented without the fluxes. To
this end, we evaluate the broken bilinear form ET-(u, v) on the constrained
space (Sk"6)d, resulting in a symmetric, positive definite matrix A, i.e. giving
rise to a dissipative term, provided (9.5) holds.

9.6 Discontinuous Galerkin discretization

From (9.15) it is now straightforward to derive the DG-discretization of (9.1);
as for the diffusion problems in Section 6.3, we replace in !P-(v, p) on each
edge e E Sint (9.14) the multiplier p in the saddle point form by the flux
average, i.e.

iije=(7(u)n), Ale =-(r(v)n) (9.17)
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where n denotes the unit normal vector perpendicular to the interface e,
resulting in: find UFE E S~k°(S2, T, Fp)d such that

EDG (UFE,V) = (S,v)S + (g,v)r, Vv E SkO°(f2,T, FT)d, (9.18)

where we defined

EDG (U, V) = EK (u, v)
KET KET (9.19)

+ E f f{(-r(v)n)[u] -[v]kr(u)n)} ds.

And we have once more the positive semidefiniteness

EDG(U, U) > 0

and EDG(U, u) = 0 if and only if ulK is a rigid body motion. It is at present
open if (9.19) satisfies a discrete inf-sup stability condition.

10 Incompressibility

10.1 Basic Equations

For an incompressible medium, -y - cc in (9.3) thereby imposing in (1.2) the
incompressibility constraint

divu = 0 in Q2. (10.1)

This constraint changes the momentum equation (1.2) to

a d a 8poU(Pui) + (pui uj) + ..u i id (02
j=1

if p > 0 is constant. The system (1.1), (10.1), (10.2) constitutes the inhomo-
geneous, incompressible NSE.

If in addition p = p0 = const in f2, it follows that
aui

PO ý- + po V.- (u uj) + Vp = p.Auj + Si, i = ,.,d

or, upon the rescaling

A - /Po, P +--P/Po, S -- 1S, (10.3)

PO

at-- + V. (uuj) + Vp = VAuj + Si, i d. (10.4)
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We remark that the energy equation is now absent and that the function p is
a Lagrange multiplier for the constraint (10.1). We shall not dwell upon the
derivation of (10.2). We note, however, that (10.1) generally causes difficulties
for a FE discretization which will also appear at large, but finite values of
,y in (9.3). Stable FE discretizations for (10.1), (10.2) promise also robust
performance for (1.2), and (9.3) as -y -+ co.

Once again, we focus on the space discretization of (10.1) - (10.4). To this
end, we consider the steady case (O/8t = 0). Linearizing around u = w with
div w = 0 yields in (10.4) the Oseen-equations

-vAu + w. Vu + Vp = S in S2,
V~u=0nf2.(10.5)V - u=0 in 2.

If, in addition, w = 0, we get the Stokes-equations

-vAu + Vp = S in/f,
V~u= inQ.(10.6)V -u =0 in S?.

Both, (10.5) and (10.6), are completed by no-slip boundary conditions

u = 0 on X2 . (10.7)

10.2 Variational formulation of the Stokes problem

Consider first (10.6) and assume S E L2 (!2)d. The discretization of the in-
compressibility constraint (10.1) can be done in 2 ways:

a) incorporation into the space, i.e. we look for u G Jo := {u G H1(S?)d

V • u = 0 in L 2(1?)}. It is generally difficult to construct FE subspaces
of JO,

b) enforcement of (10.1) via Lagrange multiplier p:
find u E Hi(D2)d, p E L2(Q2) such that

v(Vu,Vv)s - (p,V-v)Q = (S,v)s? Vv E H(f2)d, (10.8)

(V. u, q)n =0 Vq E L(2).

Here L2(j2) = {q E L2 (j2) : (q, 1)s = 0}.

This is now a mixed problem and the FE discretization of (10.7) can be
based on the standard spaces Sk,' of Section 4.

10.3 FE-discretization of the Stokes problem

Stability. Let VN C Ho (Ql)d, MN C L2o (S2) be any pair of finite-dimensional
spaces. The Galerkin discretization of (10.6), (10.7) reads:
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find UN E VN, PN E MN such that

V(VUN, Vv)Q - (PN, V v) =(S,v) Vv E VN, (10.9)

(V - UN, q)? =0 Vq E MN.

In principle, we may choose for VN, MN the hp-FE subspaces of Section 4.
However, the pair VN, MN must satisfy the discrete inf-sup stability condi-
tion inf sup (q, V. u)n (10.10)

OAqEMN 0O#UVN Iqilo JIVullo

where -N is the inf-sup (or stability) constant. (10.10) ensures stability of the
approximation and precludes in particular spurious pressure modes. Natural
choices for VN, MN, such as

VN = So'1(2, T)d, MN = So-'°(9,T)

k > 1, generally fail (10.10): One must choose (VM, MN) carefully.

Divergence stable elements on shape regular meshes. Let us present
various choices of stable hp-spaces. To this end assume that all element map-
pings FK are affine and that T is shape-regular. Then the spaces Sk,(Q, T)

are determined by the polynomial spaces VK, RK on the reference element
k

Sk'°(S?, T) = {q E L2(f2) : q o FK E MK}, (10.11)

0Sko,1V2T)d = {u E Hl(S2)d : uoFK E VK}. (10.12)

In the following table we list some pairs VK, MrK and the mathematically
established bounds on the inf-sup constant yN in (10.10). We assume shape
regular, possibly non-quasiuniform meshes

VK MK 7N k

Qk Qk-2 0(k -d/ 2
) Q (10.13a)

Qk "Pk-1 0(1) (10.13b)

Pk Pk-2 O(k- 3
) T (10.13c)

(10.13a) and (10.13b) are sharp and hold in two and three dimensions. We
remark that the bound (10.13c), proved in [58], [60] is suboptimal and only
valid in two dimensions. If used on a shape regular, possibly geometric mesh,
the velocity-pressure combinations (10.13) give in (10.10) inf-sup constants
mN which are independent of the element sizes hK, K E T.
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Stable elements on (., a)-boundary layer meshes. The situation is
different on geometric, affine (n, a)-boundary layer meshes (cf. Section 4.2 and
Figures 8 and 9) containing long rectangles. Here the combination Qk X Qk-2
is stable independent of the aspect ratio [62], [55].

Theorem 10.1. Let S2 C IR2 be a polygon and T be an affine (K, a) geometric
boundary layer mesh. Let in (10.10) for k = 2,3,...

k,1 d •kO

VN = SO' (Sr, T) , MN = S; (J?, T)

with element spaces (10.13). Then (10.10) holds with -N > Ckma if T con-_ -1/2
tains triangles and -yN Ž Ck-ax otherwise. Here C > 0 is independent of k
and of the aspect ratio of the rectangles (it depends only on r. and a).

No divergence stable, high order and high aspect ratio triangular element
family is known to date.

10.4 GLS stabilized hp-FEM for the Stokes problem

The divergence stability (10.10) imposed the use of different polynomial or-
ders for velocity pressure approximations. Equal order spaces are not diver-
gence stable. There is, however, a GLS (Galerkin Least Squares) approach
due to Hughes and Franca which allows a) to circumvent (10.10) and b) to use
equal order approximations for VN and MN. We show here an hp-extension
of this approach. Select

VN = S0'l(?, T)d, MN = Sk' 1 ((2,T) (10.14)

with equal elemental polynomial degrees. Then the hp-GLS FEM for (10.7)
reads: find (UGLS,PGLS) E VN x MN such that

B,(UGLS,PGLS; v,q)= F(v,q) V(v,q) E VN x MN, (10.15)

where a > 0 is a parameter independent of k and hK, and

B.(u,p; v, q) := v(Vu, Vv) - (p, V -v) - (V- u, q)

-(-vAu + Vp, -v v + Vq)K
KET K

F,,,(v, q) :-(S,,v) - a hK. (S, -v.Av +Vq)K.

KcT K

Notice that a = 0 gives the (unstable) Galerkin-formulation (10.9) (just add
the equations there). Note also that the GLS formulation (10.15) is fully
consistent - inserting the exact solution (u,p), we see that the GLS terms
disappear, for any value of a.

We have
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Theorem 10.2. [54], Let S? C IR2 be a polygon and T be a shape-regular
mesh. Then there exists C > 0 independent of a, k and hK such that B" in
(10.15) is stable, more precisely that

sup B. (u,p; v,q) >C a

o0 EV v (llull ,S? + j+II IIo,Q)/(11v1l,• + Ilqllo2, ) - k4 x
ooqEMN

for all 0 $ u E VN, 0 $ p E MN.

Remark 10.3. The above result does not allow for anisotropic rectangles - it
does allow, however, curved elements, i.e., nonaffine patch maps Fp. GLS
stabilization on curved, anisotropic meshes is open at present. For more in-
formation on GLS methods, we refer to [38] and the references there.

Remark 10.4. The original GLS methods were developed for k = 1, so that
the domain integrals in B0, would simplify. The evaluation of second order
derivatives of high order polynomials in stabilization terms in B"' is costly in
the element stiffness matrix evaluation of (10.15).

10.5 Numerical experiments

Implementational details. Here we present some numerical results, taken
from [29], to show: a) that hp-FEM give exponential convergence even if
the solution has singularities and b) to compare the pure Galerkin approach
with divergence stable elements with the GLS approach and equal order hp-
interpolation. Accordingly, we compare

The Galerkin formulation (GFEM): Let
Vg 1 o~("2, Mg S k-2,0(7-).

VN =Sý I(T)2  MIN = S 20 ()

The GFEM is to find (UN, PN) E VN,O x MN,O such that

Bo(UN,PN;v,q) = Fo(v,q) for all (v,q) E VN X MN.

The Galerkin Least Squares formulation (GLSFEM):
Let a > 0 and

VN = So' 1 (T) 2 , MNO = Sk' (T).

The GLSFEM is to find (UN,PN) E VN x MN such that

B. (UN,PN;v,q) = F.(v,q) for all (v,q) E VN X MN.

Note that we consider a continuous pressure approximation in the GLS-
FEM while the pressure is discontinuously interpolated in the GFEM. This
choice has been made since it points out the principal advantages of imple-
menting GLSFEM: In the GLSFEM velocity and pressure degrees of freedom
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are treated in exactly the same way. For the GFEM implementational diffi-
culties arise if one enforces different polynomial degrees for the velocity and
the pressure and different interelement continuity requirements for UN and
PN.

Our hp-FE implementation for the Stokes problem is based on HP90, a
flexible FE code for general elliptic problems in Fortran 90 [21]. HP90 allows
for isotropic and anisotropic mesh refinements, both h- and p-refinements. In
particular, h-refinements can lead to irregular meshes with hanging nodes.
HP90 is designed to handle such meshes and enforces the appropriate con-
tinuity requirements by constraining these irregular nodes. We refer to [21],
[50] for a detailed description of the constraining procedure.

In our numerical examples we use quadrilateral finite elements to dis-
cretize the domain 2. Implementationally, the elemental polynomial degrees
kK are further split into edge and internal degrees that can vary within the
element, i.e. kK is to be understood as the vector kK = {k , k, k3, k4, }.

Here k' , i = 1,... , 4, is the polynomial degree on the i-th edge, and k' the
polynomial degree in the interior of the element. The nodes ' ,&9 cor-
respond to kK, where &4,...,&4 denote the vertex nodes, &5 ,... the
mid-side nodes and et is the middle node. This is shown schematically in
Figure 10.1 for the reference square Q (0, 1)2. The shape functions that are
associated with the nodes &K of the reference element are the nodal based
Lagrange shape functions but other shape functions can be used as well (cf.
[21]).

&4 a7 &3

18a

a2

al a5  1

Fig. 10.1. Quadrilateral reference element Q with nodes ( &' ) ... ,

In the case of the GLS method we need to interpret the reference element
Q as a vector valued reference element, i.e. we use the shape functions and
degrees of freedom (dof) that correspond to Q to approximate each velocity
component and the pressure. The least-squares stabilization term in B"' in
(10.15) involves second derivatives and therefore we also need the second
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derivatives of the reference element shape functions W(ý1, 62) with respect to
the physical coordinates (X1 , x2) = FK (61, 62). In the case of an affine element
mapping FK, the chain rule gives

X2q = -•0 (0i"2 02)+ ' 2( ) 2 (10.16)
S- t,02  ) +~

But the terms OajlOxi are not constant in the case of a general (e.g. bilinear)
element mapping which leads to

a2 _ 92W - + + + a a26 (10.17)

ax? O52 5X I 91X2  N22 OXi Oa2 X2 "

The terms a~j/0x1 and a26j/8x2 are rational functions and can thus not be
integrated exactly, but the use of a higher order integration rule reduces the
error in the element computations. Nevertheless, the element computations
are completely standard and for an element K the local element stiffness
matrix EK,c, and load vector FK,c, result in an element system of equations
that is of the well known form

[ , A, 0 BL, 1a 1
EK,a [ 0 A,, B2, [ U2= (10.18)

[U] Bl,c, Bl,c,aM P 0

where u = (u,u 2), A,,, Bi,c,, B2,,, as well as M correspond to the usual
velocity and pressure combinations in (10.13) and XT it the transpose of X.

In the context of geometric refinements with irregular nodes we have to
modify EKoa in order to account for these irregular nodes. HP90 is designed
to enforce the appropriate constraints automatically on the local element
stiffness matrix and load vector. This procedure [21] results in a modified
local stiffness matrix EK,c, that corresponds to the actual globally existing

dof. This modified matrix EK,. can then be assembled to obtain the global
stiffness matrix.

In the case of the G method the situation is somewhat more complicated
due to the different approximation orders for the velocities and the pressure
and additionally the pressure being discontinuous. Here we use the shape
functions of order k on Q to approximate the velocity components and the
shape functions of order k - 2 to approximate the pressure. The dof for the
velocity components are interpreted in the standard way but the pressure
dof are now all interpreted as dof that belong to bubble shape functions,
although the shape functions of order k - 2 contain vertex and side shape
functions. It is obvious that the number of bubble shape functions of order
k on Q is exactly the same as the total number of shape functions of order
k - 2. This motivates to interprete Q as a vector valued reference element
with two components for the vertex and side dof and three components for
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the bubble dof and the shape functions being chosen as described above. The
element computations for the G method are then again standard but we have
to consider the unusual element definition. The local element stiffness matrix
EK is of a form similar to (10.18) with a = 0. We further emphasize that we
do not need the second derivatives of the shape functions to compute EK.

For an irregular mesh, we again have to modify EK to a local matrix EK that
corresponds to global dof. But now we apply the constraints only to the ve-
locity components because the pressure may be discontinuous across element
boundaries. The element matrices EK are then assembled in principle in the
usual way but the non standard element definition requires a generalization
of the assembling procedure to account for the presence of continuous and
discontinuous field variables.

In both the G & GLS method we have to enforce Dirichlet boundary
conditions that correspond to the boundary values of the exact solutions. The
standard procedure very often used in practice is to interpolate the boundary
data at equidistant points, but this procedure is known to be numerically
instable for higher approximation orders. In connection with higher order
methods interpolation at the Gauss Lobatto points is better suited (cf. [21]).
We enforce the Dirichlet data for the G & GLS method in exactly the same
way at the element level.

Although we apply Dirichlet boundary conditions to the velocity com-
ponents, the global stiffness matrix is not invertible in both formulations,
because the constant pressure mode is still not eliminated. To obtain invert-
ibility of the global system we fix the pressure at one dof. Then the global
system can be solved and we only have to postprocess the pressure so that
the mean value is zero, i.e. so that the pressure is an element of L 2(f).

Numerical results for G & GLS hp FEM. In the following we first
describe the two model problems that we use. Both model problems have
exact solutions and therefore allow for a numerical convergence study. These
two exact solutions have significantly different characteristics, i.e. one solution
is smooth and the other one has a corner singularity at the reentrant corner.
These two model problems are well suited for a comparison of the G- and
GLS- hp-FEM.

In our numerical results we present always the relative errors that we
obtained with our hp-FE implementation. We show only the errors for the
first velocity component (the results for the second one being completely
similar) and the pressure. The velocity error is computed in the Hi-norm
and the pressure error in the L2-norm. In order to be consistent with the
pressure being in L02, we subtract the mean value from the exact pressure p
and the numerical pressure PN , i.e. we subtract terms of the form

P= -• IPdX, PN = PN dx, (10.19)
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and the relati-,e error in the pressure is computed as

11(P - P) - (PN - PN)AIL2(Q)11P - PIILý(92)(0.0

The relative H'-error in the velocity components is computed in the standard
way. We remark finally that the Gauss integration rule that we use to compute
the errors is of significantly higher order than the integration rule in the
element computations.
Model problems. In our model problems we consider the Stokes equation
(10.6), (10.7) with viscosity v = 1 in the L-shaped domain A? shown in Figure
10.2. Such domains appear also in the backward facing step flow problem or in
the so-called 4:1 contraction problem. On Q? we use geometric meshes Tn+l,a
with n + 1 layers. Such a mesh (with irregular nodes) is shown for a grading
factor a = 0.5 in Figure 10.2.

X2

1

S~Xi
--1 0 1

F2

Fig. 10.2. L-shaped domain fl and a geometric mesh on Q2.

We use two exact solutions (ul,pi) and (u2 ,P2), the first one exhibiting
corner singularity phenomena at the reentrant corner 0, the second one being
analytical in i7 (including the corners). In polar coordinates (r, W,) at the
origin the first exact solution is given by

, , ((1 + A) sin(W)I(() + cos(W)TY(W)
sin(W)P'(W) - (1 + A) cos()1((p) (10.21)

P, = -rA-l[(1 + A)2 !p'(W) + T"'"(•)]/(1 - A) (10.22)
with

T1(W)= sin((1 + A) W) cos((Aw)/(1 + A) - cos((1 + A)W)-

sin((X - A)p) cos(Aw)/(X - A) + cos((1 - A)W),

37r
2
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The exponent A is the smallest positive solution of

sin(2Aw) + A sin(2w) = 0, (10.23)

which is A z 0.5444838205973307. This solution satisfies the homogeneous
Stokes equation, i.e. -Aul + Vpl = 0 in (?, and we have ul = 0 on the
segments F1, 12 shown in Figure 10.2. We emphasize that (ul, Pi) is analytical
in l\1{0}, but Vul and pi are singular at the origin. Especially, ul V H2 (s)2

and pi V H 1 (f2). This first solution reflects perfectly the typical (singular)
behavior of solutions of the Stokes equations near reentrant corners and is
generic (compare with (3.1)).

The second exact solution we use is somehow artificial, since it is analytic
in i (including the corners). In practice, one can not expect solutions to
behave so nicely at reentrant corners. Nevertheless, smooth solutions arise
for example in smooth domains and it is hence reasonable to validate the
numerical performance for such exact solutions too. We take

S- exp(x)[y cos(y) + sin(y)](
2 exp(x)y sin(y) (10.24)

P2 = 2 exp(x) sin(y). (10.25)

As above, -Au 2 + Vp 2 = 0.

Choice of stabilization parameter a. Theorem 10.2 guarantees stability
of the GLSFEM as long as the parameter a remains in a range 0 < a < Qmax.

ama.x is independent of the element sizes hK and the approximations orders
kK and is essentially determined by the best constant C for which the inverse
inequality

IIVWIIL2(R) !5 Ck 2 IIWIIL2(k) (10.26)

holds on the reference element K for all polynomials 0 E Sk (K) and all k E IN
(cf. [54]). In one dimension the best constant C in (10.26) is explicitly known
and equal to 3-/F (if k = (-1, 1)). In two space dimensions this best constant
seems not to be available, but we expect it to be of about the same order. In
addition, one may ask whether this upper bound amax is just an artefact of
the stability proof or whether it can really be observed in practice. On the
other hand, we expect the GLSFEM to become instable as a approaches 0.
In fact, for a = 0 the G- and GLS-discretization coincide and it is well known
that the Galerkin method is instable for velocity and pressure spaces of the
same polynomial order.
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Fig. 10.3. Dependence of the relative error on stabilization parameter ca.

We addressed these questions numerically by varying a in a large range.
We considered two configurations for the model problem (10.21)-(10.22) in
the L-shaped domain, the first one being k = 4, n = 4 and a = 0.5, the
second one k = 8, n :10 and a :0.5, where k is the polynomial degree
and n, a determine the geometric mesh "Tn'G with n + 1 layers and grading
factor a. In Figure 10.3 the relative errors of the first velocity component
and the pressure are plotted for these two configurations against a ranging
from 10-*° to 1010. The error curves become oscillatory for increasing a•. The
"existence" of an upper bound amaz can not be answered affirmatively with
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absolute certainty. Anyway, the performance of the GLSFEM is rather poor in
the range a > 100. But the deterioration of the GLS-scheme as a approaches
zero can indeed be observed: The errors begin to grow and finally explode
for a < 10-5. In this range the velocities are still more or less accurate but
the obtained pressures become strongly oscillatory. This phenomena (already
mentioned in [38]) is to be expected since the pressure terms are in fact the
terms that are stabilized. We see, however, that good results are obtained
for a E (10-5, 100) which depend weakly on the particular value of a in this
range (see Figure 10.4). We conclude that in practice the precise value of a
is not critical to the accuracy, as long as the dependence on hK and kK are
accounted for properly.

In all our numerical results that follow we use a = 0.1.

Numerical experiments for the smooth solution. In Figure 10.5 we
present convergence rates for the h- and p-version G & GLSFEM that
we obtained by approximating the smooth solution (10.24)-(10.25) to the
Stokes problem. In the h-version we use uniform meshes and expect algebraic
convergence rates.

The approximation order for the velocity is choosen to be cubic and this
implies a linear approximation of the pressure in the G method. We start
with 3 elements in the L-shaped domain and uniformly h-refine the mesh.
Note that the meshwidth h is given by CN½, where N is the number of dof.
It is evident from Figure 10.5 that the h-version yields algebraic convergence
of order 2 for the G method. For the GLS method the h-version convergence
rate is 3, which is optimal.

Since the exact solution (10.24)-(10.25) is analytic in Qý, we expect expo-
nential convergence of the p-version. We start again with a 3 element mesh
and increase the polynomial approximation order k from 3 to 8 for the veloc-
ity. Here, we have p z N½. The convergence rates displayed in Figure 10.5
indicate the exponential convergence of the G & GLS FEM for this smooth
solution.

Numerical experiments for the singular solution. In this section we
present numerical results for the first solution (10.21)-(10.22). We recall that
the solution has a singularity at the reentrant corner. Therefore, it is necessary
to perform mesh refinements towards the singularity in order to capture its
singular behavior. In Figures 10.6 to 10.9 we present convergence rates that
correspond to meshes of affine elements that have been refined geometrically
towards the reentrant corner with grading factor a = 0.5. An example of such
a mesh is displayed in Figure 10.2. This mesh contains I = 8 layers of elements,
which have been generated by successively refining 3 initial elements. The
irregular nodes in this mesh are constrained automatically by HP90.

In Figures 10.6 and 10.7 we show the performance of the p-version FEM
(resp. the spectral method) by fixing a grid with 1 layers, and increasing the
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polynomial approximation order k from 3 to 8. As to be expected, the graphs
indicate algebraic rates of convergence which in fact are very close to the
a-priori bound of ko ;-2 z N' 25 -, where A is the constant in (10.23). This
a-priori bound is optimal in view of [4] and the fact that the inf-sup constant
-yN in (10.9) is Ck-°'5 in the G method for the elements chosen here [69].
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h-version convergence rates
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First velodty component
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Fig. 10.7. p-version GLSFEM conv. rates for geometric meshes with hanging
nodes.

We demonstrate the dependence of the GFEM performance on the geo-
metric mesh grading in Figure 10.11. The hp-version GFEM is converging
exponentially for all values of a on these geometric meshes in accordance
with Theorem 5.9. Further, the performance is best for a = 0.15 and a = 0.2,
which are very close to the optimal a in one dimension (see Remark 5.11). In
particular, for a = 0.5 the error is about one order of magnitude larger than
for the optimal grading factor 0.15. The best result with a = 0.5 is obtained
with N • 5000 while for a = 0.15 the same accuracy is already obtained with
1500 dof. This underlines the importance of refining towards the singularity
with the grading factor a = 0.15.
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Fig. 10.9. hp-version GLSFEM cony. rates for geometric meshes with hanging
nodes.

For e > 0, introduce in (9.1), (9.3) a new variable p by

Ep:= -V. u (10.30)

and obtain the saddle-point form of (9.1), (9.3)

-2 div(p D(u)) + 2/gVp = S in R2,

V u+Ep=0inQ ?(10.31)
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Fig. 10.10. Geometric mesh with 8 layers of elements.

Mixed hp-FEM. The boundary conditions are

u = 0 on PD,(0.2

2,a(D(u) - p 1)n = g on rN .(1.2

The variational formulation of (10.31), (10.32) reads:
find (u,p) E HD1(S?)d x L 2 (p) such that Vv E H~l(Q)d

2 (iD (u), D (v)) n - 2 (,p, V v) s (S, v) s? + (g, v) rN, (10.33)

(V u,q)s + (ep,q)s2= 0 VqE 2 L(f2). (10.34)

The discretization proceeds by choosing subspaces VN C Hj~ (f 2 )d, MN C
L 2 (p2): find uN,pN E VN x MN such that (10.33), (10.34) hold for all v, q E
VN X MN.

Theorem 10.5. Let (VN, MN) satisfy the discrete inf-sup condition (10.10),
with constant -yN > 0. Then the bilinear form

-(p, V -v)s2 + (V -u, q)&2 + (ep, q)s?} (135
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Proof. Let 0 := u E VN, 0 5 p E MN. W.l.o.g. assume p = 1/2. Then

B(u,p; u,p) = ]ID(u)11 2 + IIV/EPl 2 > CKIIVUII 2

by Korn's inequality (9.10), for any E > 0.
By (10.10), for any 0 : p E MN there exists Wp E VN such that:

IIVwpii = liPli, -(P, V. Wp,p) > YNiPi2.

Hence, for any 0 > 0 we get

B(u,p; wp,0) > -YN [Ip112 
-_ ID(u)II IID(wp)ll

> -yN iipi 2 - C iVuli IIVWpII

= -YN i[piI - C IIVuII i[pi1

_ II IVpl 2- _ Il - CO pl2

= (yN - C0/2) IlpI2 - C IIVu112 .

Let 6 > 0 and put v := u + 6wp, q = p. Then

B(u,p; v, q) = B(u,p; u,p) + 6B(u,p; wp, 0)

> (CK - 6C/20) IIVuIl 2 + 6 (_YN - CO/2) Ilpl2.

Pick 9 = -yN/C and 6 = CK iN/C 2 to get

CK CKYTN 'N
B(u,p;v,q) >_ CK IlVu112 + C-- - _ IN IpI2

> CK min (1, -2/C2) iil(u,P)jjj2
2- m

Since 0 < -yN < 7, there is a constant C > 0 independent of E, N

III(v, q)lII • Ill(u,zp)lll + 6 IIVwpII = lII(u,p)I11 + CK iN C- 2 IlPIl
<5 0 I1l(u,p)lll • [

Choosing VN and MN as in the Stokes problem, for example, for kK > 2,

K E T,

VN = Sk'l(S2, T)d, MN = Sk-2'°(V2, T) (10.37)

with T denoting a geometric boundary layer mesh, gives discretizations of
(10.33), (10.34) which are uniformly stable as s -+ 0 (i.e. as -y -+ co). In
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particular, the conditioning of the stiffness matrix corresponding to (10.33),
(10.34), which, for constant -y and p reads,

2p A -2p BT) (10.38)

2p B E M

is independent of e and there holds the stability inequality

2I_(IluNgIl,0 + IIPNIIo,S2) • C (IISIIO, + IlgIlo,IN) (10.39)

where C > 0 is independent of E > 0 (it depends only on the inf-sup constant
-yN in (10.10)); for a proof we refer for example to [16], Chapter II. Note that
for E > 0 the variable p in (10.33), (10.34) is not related to the hydrostatic
pressure in (1.2).

GLS-stabilized hp-FEM. The hp-FEM for (10.33), (10.34) requires again
elements of different order for VN and MN if robustness w.r. to E = 2P/= Y
is to hold. Equal order elements cannot achieve robustness. The remedy is
again a GLS stabilization: find (UN, PN) E VN x MN such that

B.(UN,PN; v,q) = F.(v,q) V(v,q) E VN X MN (10.40)

where 0 < a•< ao is a stabilization parameter and (see (10.15))

B. (u, p; v, q) : =

{2( 1 iD(u), D(v))g - (p, V . v)s - (V -u, q)s - (ep, q)ol (10.41)

h2
-a ' (-2(V. pD(u) + VP)K, -2(V -JD(v) + Vq))K

KET K

and

Fe,(v,q) := (S,v)s + (g,v) N

-a E h__ (S, -2p(V . D(v) + Vq))K. (10.42)
KET K

Remark 10.6. The triangulation T in (10.40) must be shape regular, no GLS
stabilization for anisotropic elements is known.

Remark 10.7. In (10.41), (10.42), we assumed that PLIK = const. for all K E
T.

Remark 10.8. Note that (10.41) is fully consistent - inserting the exact solu-
tion (u, p), the least squares terms cancel.

The formulation (10.41) is stable uniformly in e:
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Theorem 10.9. There is ao > 0 independent of hK, kK such that for 0 <
a <cO and all 0 <e < 1 it holds for

VN = S- 1'(Q, T)d, MN = sk'(w2,"T)

(equal order, continuous elements):

inf sup Ba(u,p; v,q) > Ca
OOUEVN o#vEVN (lluIl• + (1 + e)1lPll•)l/ 2(Ilvl]• + (1 + e)llq]10) 1/ 2 

-
OjpEMN OqCMN

where C > 0 depends only on u and on the shape-regularity of T.

The proof is a slight modification of [27] and omitted here.

10.7 Advection dominated compressible (elastic) flow

So far, we discretized only the "elliptic" part of (1.2), incompressible or elas-
tic. Now we include advection terms of the left hand side of (1.2) into the
problem and consider the compressible Oseen-equations:

-div r(u) + w. Vu = S in Q, (10.43)

u = 0 on 09Q. (10.44)

where again, with e as in (10.29) and /,-y constant,

T'(u) = 2l{D(u)+ 1 V"U}. (10.45)
E. Y

For E = 0 we obtain the incompressible limit, i.e. the Oseen equations (10.5).
Mixed boundary conditions like (10.32) can also be posed instead of (10.44);
for ease of notation we develop the methods for (10.44).

Advection stabilized mixed hp-FEM. In (10.43) we have 2 effects: a)
advection dominance, i.e. jIw large, and b) near incompressibility, i.e. E -* 0.
We handle the latter by adopting a mixed formulation as in (10.31), and the
former by GLS stabilization as in the hp-SDFEM in Section 8. We will see
that the resulting method is stable independent of the advection size and
the incompressibility constraint on high aspect ratio (r, u)-boundary layer
meshes.

Using (10.30) (note that p = -s-1 V • u is not related to the pressure in
(1.2)), we get in (10.42) with (10A5) the system

-2divpD(u)+2V/jp+w-Vu =S in f, (10.46)

V.u+Ep=0 on 9. (10.47)
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The stabilized saddle point formulation reads: find u E VN, p E MN such
that

Be (u,p; v,q) = F (v,q) V(v,q) E VN X MN (10.48)

where VN and MN is a pair of stable spaces for the Stokes Problem, as e.g.

VN = Skol(W2,T)d, MN = sk-2'°(S2,T) (10.49)

and we define, for a parameter a > 0 and with 6 K as in (8.10), the forms

B.(u,p; v, q) := 2(/tD(u), D(v))s - (p,V. v)

" (V. u, q)g + (,p, q)Q + 1 {(w. VU, v) - (u, . Vv)Q} (10.50)

"+ a S 5g(-2(div /D(u) - /Vp) + w . Vu, w . VV)K
K

Fa(v, q) := (S, v)Q +a 1: 6K(S, W. VV)K. (10.51)
K

Remark 10.10. In (10.49), (10.50) the stabilization is fully consistent once
more, notice, however, that now only the advection term w • Vv has been
stabilized. Stabilization of the incompressibility condition is not needed if
either e = 1 or if the pair (VN, MN) is stable for the Stokes Problem, as e.g.
(10.49). In particular, by the stability of (10.37) in (10.33), (10.34) on geo-
metric boundary layer meshes, and with the choice (8.10) of the 6K, (10.48)
is stable on geometric boundary layer meshes also for advection dominated
flow. By Theorem 10.9, (10.48), (10.49) will also work for the Oseen problem
(10.5), i.e. for - = 0.

Remark 10.11. In (10.49), (10.50) we used divergence stable mixed elements
and stabilized the method only toward the advection term w Vu. One can,
however, also include additional stabilization to accommodate equal order
elements for velocity and pressure, i.e. stabilize also against divergence insta-
bility. This is done in [30], [74].

11 hp-time-stepping

All discretizations considered so far addressed the spatial parts of (1.1) -
(1.3), ignoring the time derivative altogether. Here we address the time-
discretization of (1.1) - (1.3). We semidiscretize the system (1.1) - (1.3) in
time, thereby reducing it to a sequence of nonlinear, convection dominated
elliptic-hyperbolic systems in space which are of the type considered above.
Thus, our approach is, in a sense, complementary to the usual method of lines.
Many time stepping schemes have been proposed in the literature based on
schemes from initial-value ODEs and we do not want to survey them here (see
eg. [35]). We merely observe here that all of the schemes in [35] are based on
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Taylor expansions in time and yield error estimates of order 0(Atr), r > 1,
for solutions smoothly depending on t, as the time step At -+ 0; examples
are the classical Runge-Kutta methods or the multistep-methods. In none of
these methods, error bounds that are explicit in the order k are usually avail-
able and if so, they do not allow to deduce spectral convergence for smooth
solutions. The error analysis of low order methods, in particular for viscous,
incompressible flow, has reached some maturity by now (see [51] and the
references there).

Here, we present new hp-time-stepping approaches based on a hp-DGFEM
in time [57], [62]. The methods are single step schemes which allow arbitrary
variation in order r as well as in the time step At. Conceptually, this is
reminiscent of the Runge-Kutta-Fehlberg approach to initial value ODEs.
However, there are important differences. The hp-DGFEM converge as the
order r -+ oo and the time step At > 0 is fixed. They give spectral accuracy
in transient problems with smooth time-dependence and, in conjunction with
geometric meshes and variable order in time, give exponential convergence
for parabolic evolution problems with piecewise analytic (in time) solutions
(which arise, e.g. at t = 0 for incompatible initial data or for piecewise ana-
lytic forcing terms).

Moreover, they are unconditionally stable for parabolic problems inde-
pendent of the spatial discretization. This is crucial, since hp-FEM in space
require highly anisotropic meshes for efficient resolution of layers and fronts
which tend to produce very stringent CFL limitations in explicit schemes.
The underlying variational structure of hp-DGFEM allows moreover for a-
posteriori error estimation and adaptivity.

We proceed as follows: we first elaborate on the hp-DGFEM and the hp-
SDFEM for first order hyperbolic equations as e.g. (1.1). It turns out that
the analysis in Chapter 7 applies directly here as well. Next, we present
the hp-DG time stepping technique from [57,62] for (systems of nonlinear)
parabolic initial value problems. Finally, we apply this technique to some
parabolic model evolution problems and discuss convergence results as well
as implementation issues.

11.1 hp-FEM for first order transient, hyperbolic problems

In a bounded domain (2 C IRd and for 0 < t < T, consider the unsteady
linear advection problem

Ou
-t + a. Vu + bu = S in (0,T)x×? (11.1)

where a E C 1 (-1 )d, b E C(-7) and S E L 2(1). This is the transient variant of
(7.1) and, in fact, a special case of it: we put

=(t,ux) E Q (0,T) x C IRb
Lu := . Vu + bu
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where f: (1, al, a2,..., ad) T , = - (Ot,1,..., Od). Then (11.1) takes the
form (7.1), and the initial condition

u(.,0)-=uO in (2 (11.2)

becomes simply an "inflow" boundary condition on S? x {t = 0}. We may
therefore discretize now (11.1), (11.2) in IRd+l as proposed in Section 7 - the
resulting method will allow, in fact, arbitrary combinations of space and time
meshes and orders, if the hp-DGFEM in Section 7.3 is used. For example,
Fig. 11.1 shows a possible mesh in d 1: here Q = (0, T) x (0, 1).

At

T

1

Fig. 11.1. Space time mesh for hp-DGFEM

Notice that the element boundaries need not be aligned with the (x, t) axes
- this is essential if propagating perturbations arising in hyperbolic equations
are to be tracked accurately with large time steps (see the bold line in Fig.
11.1).

Note also that we still kept in Fig. 11.1 time levels - the first order prob-
lems can be solved explicitly by propagating information with the flow i
through the elements. It should also be clear from Section 7 that space and
time orders can be varied independently here. We shall not go into detailed
error estimates here.

We next present the DG(r) scheme for nonlinear initial value ODEs. This
is of independent interest also for high order MOL discretizations. In the



426 Christoph Schwab

following subsection we address then the combined space-time discretization
of parabolic problems.

11.2 The DG(r)-FEM for nonlinear initial value problems

Let J = [to, to + T] for T > 0. Let f : J x IRM - IRM be continuous and
u0 E IRK be given. Consider the IVP

u'(t) = f(t,u(t)), t E J, u(to) = uo. (11.3)

We assume that f(t, u) is uniformly Lipschitz continuous w.r. to u, i.e. f
satisfies

Iif(t,u) - f(t,v)ii • L ilu - vJI Uv E IRM,t E J. (11.4)

(11.4) implies that (11.3) admits a unique solution u(t) E C'(J; IR<).
Let M denote a partition of J into N timesteps to < tl < ... < tN-1 <

tN = to +-T and set At, := tn -t 1 , n = 1,...,N, At = max{Atn : 1 <
n < N}. Let w : J -- IRM be a piecewise continuous function on M. Then
we define the one-sided limits

Won0:= lim <8 (tn ±4), 0<n<N-1,O<s--•O

and the jumps
[Wn = Wn' - Wn.

On the time-mesh M, we introduce

C°o(M; IRM) := {tW: J --+ IRM IJWJl, E C°o(In; IRM)}

of IRM-valued, piecewise continuous and bounded functions. The IVP (11.3)
admits the following variational formulation: find u E CbO(M; IRM) such that,
for all W E C°(M; IRM),

NE J/ (u'(t)-f(t,u(t)), W(t))dt +

N •(11.5)

Z ( + (uo+,4) = (uoW)

DG(r)-discretization. We associate with each time interval In a polynomial
degree rn > 0 and combine these degrees in the vector r = {r} n=,. Define
the subspace

Vr(M; IRM) = {f : J--+ IRM •I, EP- (In; RM), 1 <n <N}. (11.6)
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As before, if rn = r for all n, we write Vr(M; IRM). Then the DG(r)-method
reads: find U E Vr(M; IRM) such that

N

E f (([n-'t-) - (tU(t)°), -W (t))'d°+>n-=
N (11.7)

W5 -([] 1 Wn1) + (UO+, w) =(UO o,)

for all W E Vr(M; IRM).
Notice that (11.7) is only apparently global - owing to the discontinuity

of the Wp, (11.5) amounts to solving successively on I,,, n 1,2,3,... the
problems

fi (U'(t) -f (t, U(t)), Wo(t)) dt + (U+ (U-n (11.-)

In

for all Wo E Pr- (In; IRM).
In each timestep, this is a system of M(rn + 1) nonlinear equations for

the polynomial coefficients of U[Ii.

To solve it, we propose the fixed point iteration:

Let U E 7p- (In, IRM) be given. Then U = TU is the solution of the
nonlinear problem: VW E prn (In : IRM):

I (u'(t), w t)dt + (U+~ 1, p
+UI + f•I (f (t, tU(t)), wo(t)) d1.9

= ( n--l, +-1

A fixed point U = TU of (11.9) solves (11.8). We have [57]:

Theorem 11.1. Let rn > 0 be arbitrary and assume the CFL-condition

At = max{Atn : n--- 1,...,N} < V L-1. (11.10)

Then (11.8) has a unique solution and the fixed point iteration

&e+i=TU&, CO=Un0 -
converges.

Using a more sophisticated iteration (eg. Newton's Method), larger time
steps are allowable. The error u - U can be estimated as follows:

Theorem 11.2. There is c > 0 independent of r and M and K such that
the DG(r) solution U E Vr(M; IRM) of (11.7) satisfies.

I[u - UIIL2(f ,IRM) < c(1 + LT exp(cLT))½ 1
max Ilu - VIIL ,R) 1.1
li<N V12j
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If the time steps At,, are monotonically increasing,

Iiu - UIIL2(JIRM) _< c(1 + LT exp(cLT))½Ilu - VIIL2(J;IRM). (11.12)

Here V E Vr(M; IRM) is the interpolant on hn defined by Vn := u(tn, ), and

j (V, w) dt = j (u, W) dt VW E pr, (In; IRM). (11.13)

Remark 11.3. The results hold also when IRM is replaced by a Hilbert-space
with norm II o II and inner product (-,-).

11.3 DG(r)-FEM for abstract initial boundary value problems

We will generalize the hp DG-FEM to abstract parabolic equations, including
convection dominated diffusion and viscous, incompressible flows.

Abstract Setting. Let X, H be complex, separable Hilbert spaces, X "-+ H
with dense injection and norms II" -lx and II" IIH, respectively. Denote the
scalar product on H by (-, )g and identify H and H*, the antidual of H. We
get the Gelfand triple

X -4 H • H* " X* (11.14)

and write (., .)x*xx for the X* x X duality pairing and I1 I x. for the norm
in X*. Typically, for viscous flow, we have H = L2(•) and X = H0(0).

Let J = (a, b) be a time interval. Then the weak time derivative of an
X*-valued distribution u E D'(J; X*) is

f (it, v)x*×xxW(t)dt = - fL (u(t), v)Hff(t)dt (11.15)

for all v E X, p E D(J). This time derivative has the following properties:

u E L 2(J;X), it E L 2(j;X*) > (11. 16a)

u E C([a,b];H) u,v E L 2(J;X),it, ib E L2 (J;X*)

(U(t), V (t))H - (U(S), V(S))H
itt (u, i d j t  xx)d- (11.16b)

llu(t)ll2 - Ilu(s)1l 2 = 2Re (it,u)x.×xdr Vs,t E [a,b] . (11.16c)
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On the Gelfand triple (11.14) we introduce the spatial sesquilinear form

a:XxX-+ C.

We call the (possibly nonsymmetric) form a(.,-) (a, /3)-elliptic, if

Ia(u,v)I < a•llullx IIvIx Vu,v E X,

Rea(uu) > 01JUI12 VU c X.

The form a(., .) corresponds to a weak formulation of the differential operator
L : X -+ X* which could be any of the operators previously considered.

Let now 0 < T < co and J = (0, T). Consider the abstract evolution
problem:
given g E L2 (J;X*), uo E H, find

it(t) + Lu(t) = g(t) (11.17a)

u(0) = u 0 . (11.17b)

The weak formulation of (11.17) is:
find u E L2 (J; X) n Hl(J; X), u(0) = u0 , such that

-f (U(t),V)H b(t)dt+L a(uvo(t)dt (11.18)

f / (g(t),v)x. xzp(t)dt Vv E X, VV E D(J).

The DG(r) method. We discretize (11.18) in time, reducing it to a se-
quence of spatial problems involving the form a(., .) which can be discretized
using the hp-FEM in Chapters 1-10.

Let AM be a partition of J = (0, T) into N time intervals

In = [t,-l, t,], 1 < n < N, 0 = to < tl < ... < tN = T.

and set Atn := t - tn- 1 = IIn].

Set further At = max Atn. For u : J -+ X, define the one-sided limits
n

uin := lim U(tn ±= s), 0< n< N- 1
O<s-40

and u- = limo<8-o u(T - s). For 1 < n < N - 1, set [u]n = u+ - u- and
introduce on M = {In}n=1 the space

C°(M;X) = {u: J-+ X Iu E C°(In; X)}.

By integration by parts in time and elementary algebra, we obtain
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Proposition 11.4. A weak solution u E L 2(j;X) n Hl(J;X*) of (11.17)
satisfies

N N

fj (it ± Lu,v)x.×x + Z([QU]n-1,V_)H + (Uo, Vo+)H =

n= nn= (11.19)

(uo,V+)H + ( f(g,v)x.xxdt

for all v E C°O(M;X).
Let now r

prr(I;X) = {p: I-+ X :p(t) = Z tjxj E X}

j=-O

and
Vr(M•;X) = {u : J-"+ X : ujI, E P'- (1,,; X), l< n <N}.

Then the DG(r) method reads:
find U E Vr(M,X) such that

N N

B(U,V) :=Z E (V) x .<xxdt +Z L,~ xt
n=1 n n=1 In

N

E ([Uln-Y1,Vt-)H + (Uo, Vo)H (11.20)
n=2

N

= (Uo, Vo+)H + E(g(t), V)x* xXdt
n=1

for all V E Vr(M;;X).

Once again, (11.20) can be solved recursively. On each In, we get an
elliptic system for rn + 1 unknown fields in X. The structure of this system
and the algorithmic complexity of its solution crucially depend on the basis
functions chosen in time.

Let I be any time interval and let 10j},=o and {^j},=0 be two bases of
P'(-1, 1), and denote by ýoi, ¢i their transported variants on I.

Then
dci 2 d~i dV i 2 d(1

dt -At dA ' dt At dA (11.21)

We introduce the matrices
A^j ýjidt÷j(-1)0j(-1) (11.22)

1

B = Cjit(11.23)
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Then U, V E pr(I, X) can be written as

r r
U =ZEU, ýj, V = EVi Vbj, Uj, Vi EX.

j=0 i=0

The problem (11.20) in time interval I,, is equivalent to the elliptic system:
find Uj E X such that

Z A(Uj, Vj) + 2Bja(Uj, Vi) =2 ~±fi + , i = o,...,r,,. (11.24)
j=0

Here we defined, for V E X,

fI(V) := (V,l gidt) and fj := (U.-IV) i(-1)

Remark 11.5. If rn = 0, (11.20) corresponds to backward Euler and if rn = 1,
analogs of the Crank-Nicolson scheme are obtained.

Spectral decoupling. The convection-diffusion system (11.24) is very costly
to solve, particularly in three space dimensions and for r, > 0. In practice,
it is therefore very important that (11.24) can, in fact, be decoupled into rn
independent equations of the same type. This is achieved by a clever selection
of the basis functions Wi, Oi in (11.23). Assume that we have, for r > 0, an
(r + 1) x (r + 1) matrix M such that

M-1' AM = diag{au} 0=o, M-1 tBM = 1. (11.25)

Then, changing from the unknowns Ui to Uj by

=C ~ (M')ij Uj,
j=O

(11.24) decouples and becomes:

for j = 0,... r, find U3j E X such that

a(Uj, Vj) + -- V) = fi+ 2 (11.26)

for all Vjd E X, where the Tk are certain linear combinations of the f•.
We observe that (11.26) is an elliptic system with an additional mass matrix
added, completely analogous to the system resulting from the backward Euler
scheme for r = 0.

There remains the question, if M in (11.25) can be found for r > 0. This
is theoretically open. In practice, up to r = 50, such matrices can be found.
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They are, in all cases, complex as are the oj, nevertheless, the additional
gain by decoupling the system (11.24) is worth the use of complex arithmetic,
especially in dimension d = 3.

Note also that [62]

Iorl - r 2  as r -+ 00,

so that the problems (11.26) are singularly perturbed as At -+ 0 or as r -+ co.

hp-error estimates. With the hp-DGFEM, exponential convergence rates
for the time stepping scheme (11.20) can be achieved. We present here one
result from [57]. The starting point is the following abstract error estimate,
valid for any r and M.

Theorem 11.6. Let u E L 2 (J, X)flHl(J; X*) be the solution of (11.18) for
an elliptic operator L and let U E Vr(M', X) be the discrete solution of the
DGFEM (11.20).

Let Iu E Vrr(M', X) be the interpolant of U defined on each time interval
In by 1 < n < N, by

j (u-Iu,p)x.×sdt=0 VVEPr-I (J;X), (u-Iu)n=0 in X.

Then there holds the error estimatel L - ( L°)Xvlu- UI•(J;X) •_ 2(1 + I• IuII2J

11.4 An example: Heat-equation

DG - discretization. Here L = -A and X = H04(S2), H = L2 (f?). On a
generic time interval I = (a, b), At = b - a, we have to solve:
find U E pr(I; Hl(9)) such that

J ((U, V) + (VU, VV)}dt + (U(a), V(a)) =
(11.27)

(g(t), V)dt + (Ua, V(a)) VV E P'(i: Ho:(S)),

Here {oj}r=0 and {J}jr=0 are two bases of Pr(- 1 , 1), and we denote by
Vi, V• their transported variants on I. Then

dýp 2 d@i d~i 2 d'(1.8
dt - At 7 dt - d (11.28)

Again, U, V E pr(I, Hl(S2)) can be written as

j=0 i=0
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Inserting this into (11.27) yields:
find {Uj}%=o C Hi(fl) such that

r f [jsoVbidt + cpj(a)VPi(a)] (Uj, VD + [ jVCpiiPdt] (VUj, V14)}i~j~o r(11.29)
i~jE I {(Vi, I g2,bjdt) ± (U[,, Vj)Oj(a)} 1.9

i=O

for all {Vj}Z=0 C Hg(fl).

We introduce the matrices -ij, Bij as in (11.22), (11.23).

Then problem (11.29) is the elliptic system:
find {Uj};= 0 C H0(fl) such that

{r Atuj- 'At - +j2+ , i=O,...,r (11.30)
5=0

where, for V C Hg(f2),

Aim) :=-- ~ d) j(V UVý(1

Decoupling. The work for the solution of the coupled system (11.30) is
substantial, in particular in three space dimensions. Using the simultaneous
diagonalization of the matrices A and B, however, there exists M such that

M-1AM =diag{ao},= 0 , M-lBM = 1

with complex oi, however.

Then, changing bases UC = Mi- 1 Uj, (11.30) decouples into r + 1 scalar
problems:

At -D + At-i tA U,+ ,U, f + f2.

S 2 (11.31)

More generally, in the context of (11.20), we get the r+1 decoupled problems:
find Ui E X such that

a(Ui,V) + - (U-,t V H i ± 2 VV E X. (11.32)

We see that we must solve in each timestep In, altogether r,, + 1 indepen-
dent elliptic systems of reaction-diffusion type discussed in Section 6 with
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same principal part and different right hand side. This can be done in par-
allel when each system is assigned to one processor. Notice also that (11.32)
is, for small At or large r, singularly perturbed, regardless of the presence of
small viscosity effects in a(.,.). Problem (11.32) is now in the form consid-
ered in Sections 1-10, and any of the techniques there can be used for space
discretization.

hp-error estimates. Combining the abstract a-priori error estimate The-
orem 11.6 with time regularity of the heat equation, we obtain exponential
convergence, even if the initial data u0 does not satisfy any compatibility
condition.

Theorem 11.7. Consider the heat equation

ut-Au=g in Sx(0,T) u=0 on c9Qx(0,T)

with initial data uo E H6 (f2) := (L 2 (f2), H'(S2))0,2 for some 0 < 9 < 1/2,
and analytic right hand side g satisfying

<g(')(t)IIL2Q < CV!d' t E [0,T], t E INo

Discretize it in time using the hp-DGFEM on a geometric mesh MAn, with
n layers and grading factor 0 < a < 1 with degrees ri satisfying, for some
IL> 0,

r1 =0, rj Ž L[jj, j==2,...,n.

Then the semidiscrete solution U obtained from (11.27) satisfies

- UIIL2(J;Ho(S?)) < C exp(-bn) _• Cexp(-bM/ 2 )

where M denotes the number of spatial problems to be solved.

Remark 11.8. We emphasize that no compatibility is required for the initial
data for Theorem 11.7 to hold. Analogous results hold also in the abstract
setting of Section 11.3. if the operator L is the infinitesimal generator of an
analytic semigroup [62].
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Abstract. In these lectures we present the basic ideas and recent development in
the construction, analysis, and implementation of ENO (Essentially Non-Oscillatory)
and WENO (Weighted Essentially Non-Oscillatory) schemes and their applications
to computational fluid dynamics. ENO and WENO schemes are high order accu-
rate finite difference or finite volume schemes designed for problems with piecewise
smooth solutions containing discontinuities. The key idea lies at the approximation
level, where a nonlinear adaptive procedure is used to automatically choose the
locally smoothest stencil, hence avoiding crossing discontinuities in the interpola-
tion procedure as much as possible. ENO and WENO schemes have been quite
successful in computational fluid dynamics and other applications, especially for
problems containing both shocks and complicated smooth solution structures, such
as compressible turbulence simulations and aeroacoustics.
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1 Introduction

We are concerned in these lectures about high order finite difference and
finite volume schemes and their applications to computational fluid dynam-
ics. These are schemes based on interpolations of discrete data, mostly by
using algebraic polynomials. The foundation of such interpolation is in the
approximation theory, that a wider interpolation stencil yields a higher order
of accuracy, provided the function being interpolated is smooth inside the
stencil. Traditional finite difference and finite volume methods are based on
fixed stencil interpolations. For example, to obtain an interpolation for cell i
to third order accuracy, the information of the three cells i - 1, i and i + 1
can be used to build a second order interpolation polynomial. In other words,
one always looks one cell to the left, one cell to the right, plus the center cell
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itself, regardless of where in the domain one is situated. This works well for
globally smooth problems. The resulting scheme is linear for linear PDEs,
hence stability can be easily analyzed by Fourier transforms (for the uniform
grid periodic case). However, fixed stencil interpolation of second or higher
order accuracy is necessarily oscillatory near a discontinuity, see Fig. 3.1,
left, in Sect. 3. Such oscillations, which are called the Gibbs phenomena in
spectral methods, do not decay in magnitude when the mesh is refined. It
is a nuisance to say the least for practical calculations, and often leads to
numerical instabilities in nonlinear problems containing discontinuities.

Earlier attempts to eliminate or reduce such spurious oscillations near dis-
continuities were mainly based on two approaches: explicit artificial viscosity
and limiters. The first approach was to add an artificial viscosity. This could
be tuned so that it was large enough near the discontinuity to suppress, or at
least reduce the oscillations, but was small elsewhere to maintain high-order
accuracy. One disadvantage of this approach is that fine tuning of the pa-
rameters controlling the artificial viscosity is problem dependent. The second
approach was to apply limiters to eliminate the oscillations. In effect, one re-
duced the order of accuracy of the interpolation near the discontinuity (e.g.
by reducing the slope of a linear interpolant, or by using a linear rather than
a quadratic interpolant near the shock). By carefully designing such limiters,
the TVD (total variation diminishing) property could be achieved for one di-
mensional nonlinear scalar problems or linear systems, and maximum norm
stability can be achieved for multi dimensional scalar problems. Also, there
is usually no free parameters in the limiters to tune. One disadvantage of this
approach is that accuracy necessarily degenerates to first order near smooth
extrema. This could be fixed by using the TVB (total variation bounded)
modifications to the limiter in Shu [85] and Cockburn and Shu [18], but such
modifications are not self-similar. We will not discuss the method of adding
explicit artificial viscosity or the TVD limiters in these lectures. We refer the
readers to the books by Sod [96], LeVeque [66] and Godlewski and Raviart
[35], and the references listed therein.

ENO (Essentially Non-Oscillatory) schemes were first introduced by Harten,
Engquist, Osher and Chakravarthy in 1987 [47]. Their paper now has become
a classic and has been quoted numerous times. The Journal of Computational
Physics decided to republish it as part of the journal's celebration of its 30th
birthday [88].

The ENO idea proposed in [47] seems to be the first successful attempt to
obtain a self similar (i.e. no mesh size dependent parameter), uniformly high
order accurate, yet essentially non-oscillatory interpolation (i.e. the magni-
tude of the oscillations decays as O(Axk) where k is the order of accuracy)
for piecewise smooth functions. The generic solution for hyperbolic conser-
vation laws is in the class of piecewise smooth functions. The reconstruction
in [47] is a natural extension of an earlier second order version of Harten
and Osher [46]. In [47], Harten, Engquist, Osher and Chakravarthy investi-
gated different ways of measuring local smoothness to determine the local
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stencil, and developed a hierarchy that begins with one or two cells, then
adds one cell at a time to the stencil from the two candidates on the left
and right, based on the size of the two relevant Newton divided differences.
Although there are other reasonable strategies to choose the stencil based on
local smoothness, such as comparing the magnitudes of the highest degree
divided differences among all candidate stencils and picking the one with the
least absolute value, experience seems to show that the hierarchy proposed
in [47] is the most robust for a wide range of grid sizes, Ax, both before and
inside the asymptotic regime.

As one can see from the numerical examples in [47] and in later papers,
ENO schemes are indeed uniformly high order accurate and resolve shocks
with sharp and monotone (to the eye) transitions. ENO schemes are especially
suitable for problems containing both shocks and complicated smooth flow
structures, such as those occurring in shock interactions with a turbulent flow
and shock interaction with vortices.

Since the publication of the original paper of Harten, Engquist, Osher and
Chakravarthy [47], the original authors and many other researchers have fol-
lowed the pioneer work, improving the methodology and expanding the area
of its applications. ENO schemes based on point values and TVD Runge-
Kutta time discretizations, which can save computational costs significantly
for multi space dimensions, were developed in Shu and Osher [89], [90]. Bi-
asing in the stencil choosing process to enhance stability and accuracy were
developed in Fatemi, Jerome and Osher [31] and in Shu [87]. Finite volume
ENO schemes based on a staggered grid and Lax-Friedrichs formulation were
given in Bianco, Puppo and Russo [9]. Weighted ENO (WENO) schemes were
developed, using a convex combination of all candidate stencils instead of just
one as in the original ENO, Liu, Osher and Chan [69] for 1D, Jiang and Shu
[55] for multi dimensional finite difference formulation with improved accu-
racy, Friedrich [32] for multi dimensional finite volume formulation, Hu and
Shu [49], [50] for multi dimensional finite volume formulation with improved
accuracy, and Levy, Puppo and Russo [67] for 1D finite volume based on a
staggered grid and Lax-Friedrichs formulation. ENO schemes based on other
than polynomial building blocks were constructed in Iske and Soner [52] and
in Christofi [17]. Sub-cell resolution and artificial compression to sharpen con-
tact discontinuities were studied in Harten [44], Yang [105], Shu and Osher
[90] and in Jiang and Shu [55]. Multidimensional ENO schemes based on gen-
eral triangulation were developed in Abgrall [1]. ENO and WENO schemes
for Hamilton-Jacobi type equations were designed and applied in Osher and
Sethian [78], Osher and Shu [79], Lafon and Osher [62] and in Jiang and Peng
[57]. ENO schemes using one-sided Jocobians for field by field decomposition,
which improves the robustness for calculations of systems, were discussed in
Donat and Marquina [28]. Combination of ENO with multiresolution ideas
was pursued in Bihari and Harten [10]. Combination of ENO with spec-
tral method using a domain decomposition approach was carried out in Cai
and Shu [11]. On the application side, ENO and WENO have been success-
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fully used to simulate shock turbulence interactions, Shu and Osher [90],
Shu, Zang, Erlebacher, Whitaker and Osher [91], and Adams and Shariff [2];
to the direct simulation of compressible turbulence, Shu, Zang, Erlebacher,
Whitaker and Osher [91], Walsteijn [102], and Ladeinde, O'Brien, Cai and
Liu [61]; to relativistic hydrodynamics equations in Dolezal and Wong [27];
to shock vortex interactions and other gas dynamics problems in Casper and
Atkins [15], Erlebacher, Hussaini and Shu [30], and in Jiang and Shu [55]; to
incompressible flow problems in E and Shu [29] and Harabetian, Osher and
Shu [40]; to viscoelasticity equations with fading memory in Shu and Zeng
[92]; to semi-conductor device simulation in Fatemi, Jerome and Osher [31]

and Jerome and Shu [53], [54]; to image processing in Osher and Sethian
[78], Sethian [84], and Siddiqi, Kimia and Shu [93]; etc. This list is definitely
incomplete and perhaps biased by the author's own research experience, but
one can already see that ENO and WENO have been applied quite extensively
in many different fields. Most of the problems solved by ENO and WENO
schemes are of the type in which solutions contain both strong shocks and
rich smooth region structures. Lower order methods usually have difficulties
for such problems and it is thus attractive and efficient to use high order
stable methods such as ENO and WENO to handle them.

Today the study and application of ENO and WENO schemes are still
very active. We expect the schemes and the basic methodology to be devel-
oped further and to become even more successful in the future.

In these lectures we present the basic ideas and recent development in the
construction, analysis, and implementation of ENO and WENO schemes and
their applications to computational fluid dynamics. For readers interested in
coding the methods, sample codes are available from the author.

2 Reconstruction and Approximation in One
Dimension

This section gives the necessary background information about polynomial
interpolation and approximation in one space dimension.

Given a grid

a=xj<X < xa ... < XN-½ < XN+½ = b, (2.1)

We define cells, cell centers, and cell sizes by

Axi =-x i+ -xi_½, i = 1, 2, ... , N. (2.2)

We denote the maximum cell size by

AX =_ max Axi. (2.3)I<i<N
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2.1 Reconstruction from Cell Averages

The first approximation problem we will face, in solving hyperbolic conser-
vation laws using cell averages (finite volume schemes, see Sect. 4.1), is the
following reconstruction problem [47].

Problem 2.1. One dimensional reconstruction.

Given the cell averages of a function v(x):

I fx+ v(ý) d<, i = 1, 2, ... , N, (2.4)
Vi ,-"AXi Jxi.-½

find a polynomial pi (x), of degree at most k - 1, for each cell Ii, such that it
is a k-th order accurate approximation to the function v(x) inside Ij:

pi(x) = v(x) + O(Axk), x E 1, i = 1,...,N. (2.5)

In particular, this gives approximations to the function v(x) at the cell bound-
aries

v+V-+ 1 = Pi(Xi+½1), A =p(xi_½), i =1,...,N (2.6)

which are k-th order accurate:

v = v(xi+½) +O(Axk), v+_ =v(xi_1 ) +O(Axk), i = 1,...,N. (2.7)

The polynomial pi(x) in Problem 2.1 can be replaced by other simple
functions, such as trigonometric polynomials. See Sect. 8.3.

We will not discuss boundary conditions in this section. We thus assume
that vi is also available for i < 0 and i > N if needed.

In the following we describe a procedure to solve Problem 2.1.
Given the location Ii and the order of accuracy k, we first choose a "sten-

cil", based on r cells to the left, s cells to the right, and Ii itself if r, s > 0,
with r + s + 1 = k:

S(i) -Ii-r, ... , Ii+} . (2.8)

There is a unique polynomial of degree at most k - 1 = r + s, denoted by
p(x) (we will drop the subscript i when it does not cause confusion), whose
cell average in each of the cells in S(i) agrees with that of v(x):

j f x+ p(ý) d6 = j, i = i- r,._.., i+ s. (2.9)

This polynomial p(x) is the k-th order approximation we are looking for, as
it is easy to prove (2.5), see the discussion below, as long as the function v(x)
is smooth in the region covered by the stencil S(i).
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For solving Problem 2.1, we also need the approximations to the values
of v(x) at the cell boundaries, (2.6). Since the mappings from the given cell
averages Tj in the stencil S(i) to the values v +, and v+_ in (2.6) are linear,

there exist constants crj and arj, which depend on the left shift r of the
stencil S(i) in (2.8), on the order of accuracy k, and on the cell sizes Axj in
the stencil Si, but not on the function v itself, such that

k-1 k-1

+= Z-f v. f = arfuir+j (2.10)
j=0 j=0

We note that the difference between the values with superscripts ± at the
same location xi+i. is due to the possibility of different stencils for cell Ii and
for cell Ii+,. If we identify the left shift r not with the cell I, but with the
point of reconstruction xji+, i.e. using the stencil (2.8) to approximate xj+ 1,
then we can drop the superscripts ± and also eliminate the need to consider
crj in (2.10), as it is clear that

Crj Cr-I,j.

We summarize this as follows: given the k cell averages

Ui--r, ... , V:i--rVk-1,

there are constants crj such that the reconstructed value at the cell boundary

k-1

vi+½ 2 Z Crjýi-r+j, (2.11)
j=0

is k-th order accurate:

vi+½ = v(xi+½) + O(/Axk). (2.12)

To understand how the constants {crj} are obtained, as well as how the
accuracy property (2.5) is proven, we look at the primitive function of v(x):

V(x) f v(ý) <,(2.13)

where the lower limit -oo is not important and can be replaced by any fixed
number. Clearly, V(xi+½) can be expressed by the cell averages of v(x) using
(2.4):

~ Xj+j
V(xi+½)= Z + v(Q)dk= d v3Axj, (2.14)

_=-00 Xj-1 j=-00
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thus with the knowledge of the cell averages {1J } we also know the primitive
function V(x) at the cell boundaries exactly. If we denote the unique polyno-
mial of degree at most k, which interpolates V (xj+ ½) at the following k + 1
points:

Xi-r _½, - ). X'+S+½,6 (2.15)

by P(x), and denote its derivative by p(x):

p(x) P'(x), (2.16)

then it is easy to verify (2.9):

I;fj+½ p() d6 = 1f 2 P'(6) d6

1
A 

- 3j( - P_½)I ) d_½

wetehdq•I (V(xj+½) - V(xjna) a

metr nue vr(a) da -t v(6) u
1 V xj+ v (6) d.Aýxj X •j_

=;Uj, j = i- r,...,i +s,

where the third equality holds because P(x) interpolates V(x) at the points
xj_½ i and xj+½i whenever j = i - r, ..., i + s. This implies that p(x) is the

pol ynomial we are looking for. Standard approximation theory (see any ele-
mentary numerical analysis book) tells us that

P'(x) = V'(x) + O(Ax k), x E Ii.

This is the accuracy requirement (2.5).
Now let us look at the practical issue of how to obtain the constants

{crj} in (2.11). For this we could use the Lagrange form of the interpolation
polynomial:

-Y(X- r+ M -iI_ (2.17)
m=O /=0 i+m6 - Xir+1

l~m

For easier manipulation we subtract a constant V(xi-r_ ) from (2.17), and
use the fact that

k k -- Xi-r+l_ 1,

M= = 0 i--r+m-- ½ - r+l_ ½

lm
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to obtain:

P(x) - V(xi =

Zk=o (V(xjr+m½- V(x,__)) rfl =o , (2.18)
l~m

Taking derivative on both sides of (2.18), and noticing that

mr-1

V(Xir+M_½) - V(Xiri_) = Z VFi-+j"AXi_+j
j=O

because of (2.14), we obtain

1 r0 nikqO (X--Xi-r+q-)1
a M-1 l /.m qhm,.P(X) = E I _+ _ XM=o 0 o 1 0 (l m +m - i+, 0

(2.19)
Evaluating the expression (2.19) at x = xi+½, we finally obtain

v+½ = p(xi+ ½)

ZA~~rj~ir+1 k = ' q = 0 - xj1 r+q-)
k--1 lom q5mlE Axi-r+j~i-r+j E k ~

j=0 m&j+1 f 1 = (2x-r+m- -

l#m

i.e. the constants Cri in (2.11) are given by

k = 0 = 0 -)

Ek
crj=Axi-r+j z l m q m,l

m=j+-i =0 (Xi-r+m- xi-r+I-)

l~m

Although there are many zero terms in the inner sum of (2.20) when xi+
is a node in the interpolation, we will keep this general form so that it applies
also to the case where x+½I is not an interpolation point.

For a nonuniform grid, one would want to pre-compute the constants
{crj}asin (2.20),for0<i <N, -1 <r<k-1, and0<j •k-1, and
store them before solving the PDE.
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For a uniform grid, Axi = Ax, the expression for cj does not depend on
i or Ax any more:

1- 0 n (r - q + 1

k l 4 m q 54m ,l (2.21)
cr3 = _ fi'k (rn-i)Me=j+1 111 , 0 n

l~m

We list in Table 2.1 the constants crj in this uniform grid case (2.21), for
order of accuracy between k = 1 and k = 6.

Table 2.1. The constants crj in (2.21).

II k Irzl j=O j=1 j=2 j=3 j=4 ] j5
1 -1 1

0 1

-1 3/2 -1/2
0 1/2 1/2
T1 -1/2 3/2

-1 11/6 -7/6 1/3
0 1/3 5/6 -1/6
1 -1/6 5/6 1/3
2 1/3 -7/6 11/6

-1 25/12 -23/12 13/12 -1/4
0 1/4 13/12 -5/12 1/12

4 1 1/12 -1/12
1/12 -5/12 13/12 1/4

1-/4 13/12 -23/12 25/12

-1 137/60 -163/60 137/60 -21/20 1/5
0 1/5 77/60 -43/60 17/60 -1/20

5 1 -1/20 9/20 47/60 -13/60 1/30
2 1/30 -13/60 47/60 9/20 -1/20
3 -1/20 17/60 -43/60 77/60 1/5
4 1/5 -21/20 137/60 -163/60 1 137/60

-1 49/20 -71/20 79/20 -163/60 31/30 -1/6
0 1/6 29/20 -21/20 37/60 -13/60 1/30
1 -1/30 11/30 19/20 -23/60 7/60 -1/60

6 2 r1/60 -2/15 37/60 37/60 -2/15 1/60
] -1/6/6 0 60 -23/60 19/20 11/30 -1/30

4 1/30 -13/60 37/60 -21/20 29/20 1/6
5 -1/6 31/30 -163/60 79/20 -71/20 49/20
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From Table 2.1, we would know, for example, that
1 5 1 zx .

vi+ - -- I-i-1 + 5 Vi + 1±ijl + -} OAX3).

2.2 Conservative Approximation to the Derivative from Point
Values

The second approximation problem we will face, in solving hyperbolic con-
servation laws using point values (finite difference schemes, see Sect. 4.2), is
the following problem in obtaining high order conservative approximation to
the derivative from point values [89,90].

Problem 2.2. One dimensional conservative approximation.

Given the point values of a function v(x):

vi =_ v(xi), i -- 1, 2, ..., N , (2.22)

find a numerical flux function

v i+½ = 9(vi-r, ... , vi+s), i = 0, 1,...,N, (2.23)

such that the flux difference approximates the derivative v'(x) to k-th order
accuracy:

1 (,b+½-,_o_½) = v'(x,) + 0('AX k), i = 0,15,....,N . (2.24)

We again ignore the boundary conditions here and assume that vi is
available for i < 0 and i > N if needed.

The solution of this problem is essential for the high order conservative
schemes based on point values (finite difference) rather than on cell averages
(finite volume).

This problem looks quite different from Problem 2.1. However, we will
see that there is a close relationship between these two. We assume that the
grid is uniform, Axi = Ax. This assumption is, unfortunately, essential in
the following development.

If we can find a function h(x), which may depend on the grid size Ax,
such that

A x (_.) h(ý)dý, (2.25)
1 _l A.

then clearly
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hence all we need to do is to use

vi+½ = h(xi+½) + O(Axk) (2.26)

to achieve (2.24). We note here that it would look like an O(Axk+l) term in
(2.26) is needed in order to get (2.24), due to the Ax term in the denominator.
However, in practice, the O(Axk) term in (2.26) is usually smooth, hence the
difference in (2.24) would give an extra O(Ax), just to cancel the one in the
denominator.

It is not easy to approximate h(x) via (2.25), as it is only implicitly
defined there. However, we notice that the known function v(x) is the cell
average of the unknown function h(x), so to find h(x) we just need to use
the reconstruction procedure described in Sect. 2.1. If we take the primitive
of h(x):

H(x) = ,h(6)d6 (2.27)

then (2.25) clearly implies

i 2

H(xi+½) h()d = Ax v v. (2.28)
j=0- Xj-1 j=-O0

Thus, given the point values {vj}, we "identify" them as cell averages of
another function h(x) in (2.25), then the primitive function H(x) is exactly
known at the cell interfaces x = xi+½. We thus use the same reconstruc-
tion procedure described in Sect. 2.1, to get a k-th order approximation to
h(xi+½), which is then taken as the numerical flux Oi+½ in (2.23).

2 2

In other words, if the "stencil" for the flux i+½ in (2.23) is the following
k points:

Xi-r, ... , xi+s, (2.29)

where r + s = k - 1, then the flux Oi+½ is expressed as

k-1

+= crjvi-r+j, (2.30)
j=O

where the constants {crj} are given by (2.21) and Table 2.1.
From Table 2.1 we would know, for example, that if

1 5 1
Vi+. = --- Vi-1 + -Vi + -vi+,

then
1 (i+- =i_½ =v,(x) + O(Axa3 ).

We emphasize again that, unlike in the reconstruction procedure in Sect. 2.1,
here the grid must be uniform: Axj = Ax. Otherwise, it can be proven that
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no choice of constants Crj in (2.30) (which may depend on the local grid sizes
but not on the function v(x)) could make the conservative approximation to
the derivative (2.24) higher than second order accurate (k > 2). The proof is
a simple exercise of Taylor expansions. Thus, the high order finite difference
(third order and higher) discussed in these lecture notes can apply only to
uniform or smoothly varying grids.

Because of this equivalence of obtaining a conservative approximation
to the derivative (2.23)-(2.24) and the reconstruction problem discussed in
Sect. 2.1, we will only need to consider the reconstruction problem in the
following sections.

2.3 Fixed Stencil Approximation

By fixed stencil, we mean that the left shift r in (2.8) or (2.29) is the same
for all locations i. Usually, for a globally smooth function v(x), the best
approximation is obtained either by a central approximation r = s - 1 for
even k (here central is relative to the location xi+ 1), or by a one point upwind
biased approximation r = s or r = s - 2 for oddi k. For example, if the grid
is uniform zAxi = Ax, then a central 4th order reconstruction for vi+½, in
(2.11), is given by

1 7 7 1

Vj+= - -1 + 2i7 + -U+l - -Ti+2 + O(AX4 ),

and the two one point upwind biased 3rd order reconstructions for vj+½ in
(2.11), are given by

1 _ 5 1

Vj+½ = -- v + -5 + -j;j+i + o( Ax3)

1 5 _ 1
or Vi+1 = Vi + -vi+l - -Vi+2 + O(Ax)•

Similarly, a central 4th order flux (2.30) is

1 ± +7 1Oi+½ =-vi-1 + •Vi + •Vi+l - Vi+2 ,
2 12 12 12 12

which gives

1 (o± - =V'(X) + O(AX4 ),

and the two one point upwind biased 3rd order fluxes (2.30) are given by

1 5 1
f+I- V--v +i i +- ýi

2 6 6

1 5 1
or V+ 2= ýVi + ±vi+l - 6Vi+2,

which gives
1 (,+½_,i.½)=v,(X,)+O(AX3).

,•x-
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Traditional central and upwind schemes, either finite volume or finite
difference, can be derived by these fixed stencil reconstructions or flux differ-
enced approximations to the derivatives.

3 ENO and WENO Reconstruction and Approximation
in One Dimension

In the previous section we are mainly concerned with the approximation
result when the stencil is chosen and fixed. In this section we will mainly
discuss the issue of how to choose the stencils.

For solving hyperbolic conservation laws, we are interested in the class of
piecewise smooth functions. These are functions which have as many deriva-
tives as the scheme calls for, everywhere except for at finitely many isolated
points. At these finitely many discontinuity points, the function v(x) and its
derivatives are assumed to have finite left and right limits. Such functions are
"generic" for solutions to hyperbolic conservation laws, in the sense that in
applications we mostly encounter such functions.

For such piecewise smooth functions, the order of accuracy we refer to
in these lecture notes are formal, that is, it is defined as whatever accu-
racy determined by the local truncation error in the smooth regions of the
function. This is the tradition taken in the literature when discussing about
discontinuous solutions.

If the function v(x) is only piecewise smooth, a fixed stencil approxi-
mation described in Sect. 2.3 may not be adequate near discontinuities.
Fig. 3.1 (left) gives the 4-th order (piecewise cubic) interpolation with a
central stencil for the step function, i.e. the polynomial approximation in-
side the interval [xi_ 1, Xi+ ½] interpolates the step function at the four points
x. a, x. 1, x. i, x. a. Notice the obvious over/undershoots for the cells near

the discontinuity.
These oscillations (termed the Gibbs Phenomena in spectral methods)

happen because the stencils, as defined by (2.15), actually contain the dis-
continuous cell for xi close enough to the discontinuity. As a result, the ap-
proximation property (2.5) is no longer valid in such stencils.

3.1 ENO Approximation

A closer look at Fig. 3.1 (left) motivates the idea of "adaptive stencil", namely,
the left shift r changes with the location xi. The basic idea is to avoid in-
cluding the discontinuous cell in the stencil, if possible.

To achieve this effect, we need to look at the Newton formulation of the
interpolation polynomial.

We first review the definition of the Newton divided differences. The 0-th
degree divided differences of the function V(x) in (2.13)-(2.14) are defined
by:

V[xi_½] = V(xi_½); (3.1)
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Fig. 3.1. Fixed central stencil cubic interpolation (left) and ENO cubic interpola-
tion (right) for the step function. Solid: exact function; Dashed: interpolant piece-
wise cubic polynomials.

and in general the j-th degree divided differences, for j Ž 1, are defined
inductively by

y[xi+½, ..., xi+j_ ½] - y[xj-_ ,...., Xi+•_
y[X•_½, ...,Xj+j_½] =- (3.2)2 2xi+j- - xi_ 1

Similarly, the divided differences of the cell averages U in (2.4) are defined by

U[xi] =- vi; (3.3)

and in general

U[xi, .. ,xi+j] U [Xi+l, ..., Xi+j] - ýU[Xi, ..., Xi+j-1] (3.4)

Xi+j - xi

We note that, by (2.14),

v x• 1,x._,1 v(Xi+½) - v(Xi-_½)
[ [- V6 ,- =j22 = Vi, (3.5)2 2 xi+ i - Xj-_½

i.e. the 0-th degree divided differences of 15 are the first degree divided dif-
ferences of V(x). We can then write the divided differences of V(x) of first
degree and higher in terms of ;, using (3.5) and (3.2), thus completely avoid
the computation of V.

The Newton form of the k-th degree interpolation polynomial P(x), which
interpolates V(x) at the k+1 points (2.15), can be expressed using the divided
differences (3.1)-(3.2) by

k j-1
P(X) V V[Xir-, -=O Xi-r+j- 1 J X - Xi-r+m..i) (3.6)

20 2 2
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We can take the derivative of (3.6) to get p(x) in (2.16):

k j-1 j-1

p(X) = ZV[Xi .,-Xi-r+j-1I E II (X-XiTr+1- (.7
j=1 m=O l= 0

lIm

Notice that only first and higher degree divided differences of V(x) appear
in (3.7). Hence by (3.5), we can express p(x) completely by the divided dif-
ferences of ýU, without any need to reference V(x).

Let us now recall an important property of divided differences:

= V , (3.8)

for some ý inside the stencil: xi_½ < ý < xi+j_½, as long as the function
V(x) is smooth in this stencil. If V(x) is discontinuous at some point inside
the stencil, then it is easy to verify that

V[xi_½!, ... , xi+j_½] O . (3.9)

Thus the divided difference is a measurement of the smoothness of the func-
tion inside the stencil.

We now describe the ENO idea by using (3.6). Suppose our job is to find
a stencil of k + 1 consecutive points, which must include xi- ½ and xi+½, such
that V(x) is "the smoothest" in this stencil comparing with other possible
stencils. We perform this job by breaking it into steps, in each step we only
add one point to the stencil. We thus start with the two point stencil

S2 (i) = fXi_½, Xi+ (3.10)

where we have used S to denote a stencil for the primitive function V. Notice
that the stencil S for V has a corresponding stencil S for U through (3.5), for
example (3.10) corresponds to a single cell stencil

S(i) = {I%}

for 7U. The linear interpolation on the stencil S 2 (i) in (3.10) can be written in
the Newton form as

S1X= V[xi_½] +V[xi_½,xi+½16 x _½).

At the next step, we have only two choices to expand the stencil by adding
one point: we can either add the left neighbor xi- , resulting in the following
quadratic interpolation

R(x) = P1(x) + V [x-a, x- xi X )( - X2 (3.11)
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or add the right neighbor xi+ , resulting in the following quadratic interpo-
lation

S, =2 (X - Xii) (x- xi+i). (3.12)

We note that the deviations from P'(x) in (3.11) and (3.12), are the same
function

multiplied by two different constants

V[xi_A,xi_½,xi+l], and Y[xi_½,xi+½,xi+!]. (3.13)

These two constants are the two second degree divided differences of V(x)
in two different stencils. We have already noticed before, in (3.8) and (3.9),
that a smaller divided difference implies the function is "smoother" in that
stencil. We thus decide upon which point to add to the stencil, by comparing
the two relevant divided differences (3.13), and picking the one with a smaller
absolute value. Thus, if

IV[xi !,xi 1,x•_+Il < V[xi_½,xi+½,xi+], (3.14)

we will take the 3 point stencil as

S3 (i) = {xi-A,xi-_,xi+½};

otherwise, we will take

S3 (i) = {Xi_½,Xi+½,Xi+ }

This procedure can be continued, with one point added to the stencil at
each step, according to the smaller of the absolute values of the two relevant
divided differences, until the desired number of points in the stencil is reached.

We note that, for the uniform grid case Axi = Ax, there is no need to
compute the divided differences as in (3.2). We should use undivided differ-
ences instead:

V < x, 1,xi+1 >= V[xi_½,xi+!] (3.15)

(see (3.5)), and

V < Xi_ , ... Xi+j+½ > (3.16)
=6 V1 i½ .. x++ > -V < xi_½, ...,xi+j_½ >, j >_ 1.

The Newton interpolation formulae (3.6)-(3.7) should also be adjusted ac-
cordingly. This both saves computational time and reduces round-off effects.

The FORTRAN program for this ENO choosing process is very simple:
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* assuming the m-th degree divided (or undivided) differences
* of V(x), with x-i as the left-most point in the arguments,
* are stored in V(i,m), also assuming that "is" is the
* left-most point in the stencil for cell i for a k-th degree
* polynomial

is=i
do m=2,k
if(abs(V(is-l,m)).lt.abs(V(is,m))) is=is-I
enddo

Once the stencil S(i), hence S(i), in (2.8) is found, one could use (2.11),
with the prestored values of the constants crj, (2.20) or (2.21), to compute
the reconstructed values at the cell boundary. Or, one could use (2.30) to
compute the fluxes. An alternative way is to compute the values or fluxes
using the Newton form (3.7) directly. The computational cost is about the
same.

We summarize the ENO reconstruction procedure in the following

Algorithm 3.1. ID ENO reconstruction.

Given the cell averages {IUi} of a function v(x), we obtain a piecewise poly-
nomial reconstruction, of degree at most k - 1, using ENO, in the following
way:

1. Compute the divided differences of the primitive function V(x), for de-
grees 1 to k, using :U, (3.5) and (3.2).
If the grid is uniform Axi = Ax, at this stage, undivided differences
(3.15)-(3.16) should be computed instead.

2. In cell Ii, start with a two point stencil
S2 (i) = {xj•_½,x+l}

for V(x), which is equivalent to a one point stencil,

Si(i) = {h}

for U.
3. For 1 = 2, ..., k, assuming

SI(i) =Xj+½,...,xj+j_ }

is known, add one of the two neighboring points, xj_ or xj++½i, to the
stencil, following the ENO procedure:

- If [ 1 I (3 .1 7 )
V i I,.., I-½ < YV[Xj+½,...,xj+j+½], 3.7

add x_ to the stencil S1 (i) to obtain

S1+1(i) = {•j_ 1, ...7 Xj+_½
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- Otherwise, add xj+,+½ to the stencil S1 (i) to obtain

S1+1(i) = {Xj+,. Xj+l+ 16

4. Use the Lagrange form (2.19) or the Newton form (3.7) to obtain pi(x),
which is a polynomial of degree at most k- 1 in Ii, satisfying the accuracy
condition (2.5), as long as v(x) is smooth in Ii.
We could use pi(x) to get the approximations at the cell boundaries:

V_ 1+ = pi(xi+½), V+__ = pi(xi_½).

However, it is usually more convenient, when the stencil is known, to use
(2.10), with Crj defined by (2.20) for a nonuniform grid, or by (2.21) and
Table 2.1 for a uniform grid, to compute an approximation to v(x) at the
cell boundaries.

For the same piecewise cubic interpolation to the step function, but this
time using the ENO procedure with a two point stencil $2 (i) = {Xj_ I, xj_ }
in the Step 2 of Algorithm 3.1, we obtain a non-oscillatory interpolation, in
Fig. 3.1 (right).

For a piecewise smooth function V(x), ENO interpolation starting with
a two point stencil S2 (i) = {xj_1,xji+I in the Step 2 of Algorithm 3.1, as
was shown in Fig. 3.1 (right), has the following properties [48]:

1. The accuracy condition

P,(X) = V(x) + Q(ýXk+l), x E Ii

is valid for any cell Ii which does not contain a discontinuity.
This implies that the ENO interpolation procedure can recover the full
high order accuracy right up to the discontinuity.

2. Pi(x) is monotone in any cell Ii which does contain a discontinuity of
V(x).

3. The reconstruction is TVB (total variation bounded). That is, there exists
a function z(x), satisfying

z(x) = P,(x) + O(Axk+l), x E Ii

for any cell Ii, including those cells which contain discontinuities, such
that

TV(z) < TV(V).

Property 3 is clearly a consequence of Properties 1 and 2 (just take z(x) to
be V(x) in the smooth cells and take z(x) to be Pi(x) in the cells containing
discontinuities). It is quite interesting that Property 2 holds. One would have
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expected trouble in those "shocked cells", i.e. cells Ii which contain disconti-
nuities, for ENO would not help for such cases as the stencil starts with two
points already containing a discontinuity. We will give a proof of Property 2
for a simple but illustrative case, i.e. when V(x) is a step function

V(x) ={0, X < 0;
1, X > 0.

and the k-th degree polynomial P(x) interpolates V(x) at k + 1 points
X16 < Xa_ < ... < Xk+½

2 2 2

containing the discontinuity

Xjo ½ < 0 < Xjo+ ½

for some jo between 1 and k. For any interval which does not contain the
discontinuity 0:

[xj_½, j 5 jo, (3.18)

we have
P(xj_½) = V(xj_) = V(xj+½) = P(xj+½),

hence there is at least one point • in between, Xj_½ < jj < xj+½, such
that P'(ýj) = 0. This way we can find k - 1 distinct zeroes for P'(x), as
there are k - 1 intervals (3.18) which do not contain the discontinuity 0.
However, P'(x) is a non-zero polynomial of degree at most k - 1, hence can
have at most k - 1 distinct zeroes. This implies that P'(x) does not have any
zero inside the shocked interval [xj 0 _½, xjo+½], i.e. P(x) is monotone in this

shocked interval. This proof can be generalized to a proof for Property 2 [48].

3.2 WENO Approximation

In this subsection we describe the recently developed WENO (weighted ENO)
reconstruction procedure [69,55]. WENO is based on ENO, of course. For
simplicity of presentation, in this subsection we assume the grid is uniform,
i.e. Axi = Ax.

As we can see from Sect. 3.1, ENO reconstruction is uniformly high order
accurate right up to the discontinuity. It achieves this effect by adaptively
choosing the stencil based on the absolute values of divided differences. How-
ever, one could make the following remarks about ENO reconstruction, indi-
cating rooms for improvements:

1. The stencil might change even by a round-off error perturbation near
zeroes of the solution and its derivatives. That is, when both sides of
(3.17) are near 0, a small change at the round off level would change the
direction of the inequality and hence the stencil. In smooth regions, this
"free adaptation" of stencils is clearly not necessary. Moreover, this may
cause loss of accuracy when applied to a hyperbolic PDE [83,87].
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2. The resulting numerical flux (2.23) is not smooth, as the stencil pattern
may change at neighboring points.

3. In the stencil choosing process, k candidate stencils are considered, cov-
ering 2k - 1 cells, but only one of the stencils is actually used in forming
the reconstruction (2.10) or the flux (2.30), resulting in k-th order accu-
racy. If all the 2k - 1 cells in the potential stencils are used, one could
get (2k - 1)-th order accuracy in smooth regions.

4. ENO stencil choosing procedure involves many logical "if" structures, or
equivalent mathematical formulae, which are not very efficient on certain
vector computers such as CRAYs (however they are friendly to parallel
computers).

There have been attempts in the literature to rectify the first problem, the
"free adaptation" of stencils. In [31] and [87], the following "biasing" strategy
was proposed. One first identity a "preferred" stencil

Spre(i) = xir+ , ... , Xi-r+}+ 12., (3.19)

which might be central or one-point upwind. One then replaces (3.17) by
jV[xj_½,...,xj+j_½]j < b jV[xj+½,...,xj+1+½],1

if
xj+½ > Xir+½,

i.e. if the left-most point xj+i in the current stencil S1 (i) has not reached
the left-most point Xi-r+½ of the preferred stencil Spref (i) in (3.19) yet;
otherwise, if

xj+ 1 xi-,+½,2

one replaces (3.17) by
b jV[xj_½,...,xj+j_½]1 < 1V[xj+½.,...,xj+,+½].

Here, b > 1 is the so-called biasing parameter. Analysis in [87] indicates a
good choice of the parameter b = 2. The philosophy is to stay as close as
possible to the preferred stencil, unless the alternative candidate is, roughly
speaking, a factor b > 1 better in smoothness.

WENO is a more recent attempt to improve upon ENO in these four
points. The basic idea is the following: instead of using only one of the can-
didate stencils to form the reconstruction, one uses a convex combination of
all of them. To be more precise, suppose the k candidate stencils

Sr(i) - {Xi-r, ... ,Xi-r+k-1}, r = 0,...,k - 1 (3.20)

produce k different reconstructions to the value vi+½, according to (2.11),

k-1Cr•)
V+ ½l - crj0i-r+j, r = 0,..., k - 1, (3.21)

5=0
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WENO reconstruction would take a convex combination of all v(r), defined•i+ ½f

in (3.21) as a new approximation to the cell boundary value v(xi+½):

k-1

2 -- , (Wrv) (3.22)
r=O

Apparently, the key to the success of WENO would be the choice of the
weights Wr. We require

k-1

w 0, Ewr = 1 (3.23)
r=O

for stability and consistency.
If the function v(x) is smooth in all of the candidate stencils (3.20), there

are constants dr such that
k-1

v 5+½ drv~ r= v(xi) + o(ýz 2k-). (3.24)
r=O

For example, d, for 1 < k < 3 are given by

do = 1, k =1;
2 dl 1

do=2, d= , k=2;
3 3'
3 3 1

do = -- ' d= -•, d 2 = , k = 3.
10' 5' 10'

We can see that dr is always positive and, due to consistency,

k-1

E d,=1. (3.25)
r=O

In this smooth case, we would like to have

Wr = dr + O(Axk-1), r = 0,..., k - 1, (3.26)

which would imply (2k - 1)-th order accuracy:

k-1vi+½ 1 _ (01=VXi,) ('AU1
v wrv(_ = v(x2+½) + Q(Ax

2 k-) (3.27)
r=O

because
k-1 k-1 k-1-" , ( r) V-• ( r) = • ( W,- d ) ( r) 1 - v( i+ ½)5 r i 1 E drW -+ d,.) V -+

r=0 r=O r=O

k-1
E 0 ('ýXk-l)°0('AXk)
r-O

= O(zAx 2 k-1)
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where in the first equality we used (3.23) and (3.25).
When the function v(x) has a discontinuity in one or more of the stencils

(3.20), we would hope the corresponding weight(s) w, to be essentially 0, to
emulate the successful ENO idea.

Another consideration is that the weights should be smooth functions of
the cell averages involved. In fact, the weights designed in [55] and described
below are C'.

Finally, we would like to have weights which are computationally efficient.
Thus, polynomials or rational functions are preferred over exponential type
functions.

All these considerations and ample numerical experiments lead to the
following form of weights:

Wr a, r = 0,..., k - 1 (3.28)

with d,.
a. - d, "(3.29)

Here e > 0 is introduced to avoid the denominator to become 0. We take f =

10-6 in all our numerical tests [55]. 0, are the so-called "smooth indicators"
of the stencil S,(i): if the function v(x) is smooth in the stencil Sr(i), then

1, = O(Ax2 ),

but if v(x) has a discontinuity inside the stencil Sr (i), then

Or = O(1).

Translating into the weights w, in (3.28), we will have

Wr = 0(1)

when the function v(x) is smooth in the stencil Sr(i), and

W,. = O(Ax 4 )

if v(x) has a discontinuity inside the stencil S,(i). Emulation of ENO near a
discontinuity is thus achieved.

One also has to worry about the accuracy requirement (3.26), which must
be checked when the specific form of the smooth indicator /, is given. For any
smooth indicator P3r, it is easy to see that the weights defined by (3.28) sat-
isfies (3.23). To satisfy (3.26), it suffices to have, through a Taylor expansion
analysis:

0, = D (1 + O(Axk-1)), r = 0,..., k - 1, (3.30)

where D is a nonzero quantity independent of r (but may depend on Ax).
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As we have seen in Sect. 3.1, the ENO reconstruction procedure chooses
the "smoothest" stencil by comparing a hierarchy of divided or undivided
differences. This is because these differences can be used to measure the
smoothness of the function on a stencil, (3.8)-(3.9). In [55], after extensive
experiments, a robust (for third and fifth order at least) choice of smooth
indicators fr is given. As we know, on each stencil Sr(i), we can construct
a (k - 1)-th degree reconstruction polynomial, which if evaluated at x =
xi+1, renders the approximation to the value v(xi+½) in (3.21). Since the
totaý variation is a good measurement for smoothness, it would be desirable
to minimize the total variation for this reconstruction polynomial inside Ii.
Consideration for a smooth flux and for the role of higher order variations
leads us to the following measurement for smoothness: let the reconstruction
polynomial on the stencil Sr(i) be denoted by pr(X), we define

/J =Ax 2, 1'
k-1 = f 2 a1x 2 dx. (3.31)

The right hand side of (3.31) is just a sum of the squares of scaled L2 norms
for all the derivatives of the interpolation polynomial pr(x) over the interval
(xi i, xi+ i ). The factor Ax 21-1 is introduced to remove any Ax dependency
in the derivatives, in order to preserve self-similarity when used to hyperbolic
PDEs (Sect. 4).

We remark that (3.31) is similar to but smoother than the total variation
measurement based on the L 1 norm. It also renders a more accurate WENO
scheme for the case k = 2 and 3.

When k = 2, (3.31) gives the following smoothness measurement [69,55]:

'0 = (U± 1 -_ Ti) 2 , )31 = (U, -_ Ui- 1) 2 . (3.32)

For k = 3, (3.31) gives [55]:

13 ) 2 1)
00 = 12(( - 2U+1 + U+2 2 + (3. - 4Fi+l + ýU+2 )2 ,

=13 1- 2 + 7U+1) 2 ± -1i+1) 2 , (3.33)
12 4
13 2 1

2=2 (Ui-2 - 2 Ui_ +j) ý ± •(Ui- 2 - 4Ui-i + 3) 2 .

We can easily verify that the accuracy condition (3.30) is satisfied, even near
smooth extrema [55]. This indicates that (3.32) gives a third order WENO
scheme, and (3.33) gives a fifth order one.

Notice that the discussion here has a one point upwind bias in the op-
timal linear stencil, suitable for a problem with wind blowing from left to
right. If the wind blows the other way, the procedure should be modified
symmetrically with respect to xi+½i1.

In summary, we have the following WENO reconstruction procedure:
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Algorithm 3.2. ID WENO reconstruction.

Given the cell averages {vI} of a function v(x), for each cell Ii, we obtain
upwind biased (2k - 1)-th order approximations to the function v(x) at the
cell boundaries, denoted by v+_½ and v- , , in the following way:

(0) of -th order accuracy, in (3.21),
1. Obtain the k reconstructed values v o k, or

based on the stencils (3.20), for r = 0, ... , k - 1;

Also obtain the k reconstructed values vr)½, of k-th order accuracy, using

(2.10), again based on the stencils (3.20), for r = 0, ... , k - 1;
2. Find the constants dr and dr, such that (3.24) and

k--1

Vi__)- = V(X._½)+ O(Ax 2k-1)

r=O

are valid. By symmetry,
d, = dk-1-r.

3. Find the smooth indicators /% in (3.31), for all r = 0, ... , k - 1. Explicit
formulae for k = 2 and k = 3 are given in (3.32) and (3.33) respectively.

4. Form the weights w, and Dr using (3.28)-(3.29) and

oWr I k-r (6 +r 0-- r = 0, .... k - 1.
8s=0 ds ( r2

5. Find the (2k - 1)-th order reconstruction

k-I k-i

vi+ = , v+ = , (3.34)
r=O r=0

We can obtain weights for higher orders of k (corresponding to seventh
and higher order WENO schemes) using the same recipe. However, these
schemes of seventh and higher order have not been extensively tested yet.
Current research of Balsara and Shu [5] addresses this issue.

4 ENO and WENO Schemes in One Dimension

In this section we describe the ENO and WENO schemes for one dimensional
conservation laws:

Ut(X, t) + f.(u(x, t)) = 0 (4.1)

equipped with suitable initial and boundary conditions.
We will concentrate on the discussion of spatial discretization, and will

leave the time variable t continuous (the method-of-lines approach). Time
discretization will be discussed in Sect. 9.
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Our computational domain is a < x < b. We have a grid defined by (2.1),
with the notations (2.2)-(2.3). Except for in Sect. 4.5, we do not consider
boundary conditions. We thus assume that the values of the numerical solu-
tion are also available outside the computational domain whenever they are
needed. This would be the case for periodic or compactly supported problems.

4.1 Finite Volume Formulation in the Scalar Case

For finite volume schemes, or schemes based on cell averages, we do not solve
(4.1) directly, but its integrated version. We integrate (4.1) over the interval
Ii to obtain

a-(xi,,t) =__ (s(U(xi+,t)-s(U(Xi_Itl)), (4.2)
dt AXj 2+2

where
1 --/x,+½ u(6, t) d< (4.3)

S-- 
x_ ½2

is the cell average. We approximate (4.2) by the following conservative scheme

t - I- - -(4.4)
dt Axj

where Ui(t) is the numerical approximation to the cell average U(xi, t), and
the numerical flux fi+ is defined by

I ~= h (U-+~ " U+i (4.5)

with the values u±+½ obtained by the ENO reconstruction Algorithm 3.1, or
i+y~

by the WENO reconstruction Algorithm 3.2.
The two argument function h in (4.5) is a monotone flux. It satisfies:

- h(a, b) is a Lipschitz continuous function in both arguments;
- h(a, b) is a nondecreasing function in a and a nonincreasing function in

b. Symbolically h(f , );
- h(a, b) is consistent with the physical flux f, that is, h(a, a) = f(a).

Examples of monotone fluxes include:

1. Godunov flux:

h(a, b) = mina<u<b f(u) if a < b (4.6)
maxb<u<a f(u) if a > b (

2. Engquist-Osher flux:

h(a, b) = max(f'(u), O)du + min(f'(u), O)du + f(O). (4.7)ja
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3. Lax-Friedrichs flux:

h(a, b) = [f(a) + f(b) - a(b - a)] (4.8)

where a = max, If'(u) is a constant. The maximum is taken over the
relevant range of u.

We have listed the monotone fluxes from the least dissipative (less smearing
of discontinuities) to the most. For lower order methods (order of reconstruc-
tion is 1 or 2), there is a big difference between results obtained by different
monotone fluxes. However, this difference becomes much smaller for higher
order reconstructions. In Fig. 4.1, we plot the results of a right moving shock•2

for the Burgers' equation (f(u) = - in (4.1)), with first order reconstruction
using Godunov and Lax-Friedrichs monotone fluxes (top), and with fourth or-
der ENO reconstruction using Godunov and Lax-Friedrichs monotone fluxes
(bottom). We can clearly see that, while the Godunov flux behaves much
better for the first order scheme, the two fourth order ENO schemes behave
similarly. We thus use the simple and inexpensive Lax-Friedrichs flux in most
of our high order calculations.

We remark that, by the classical Lax-Wendroff theorem [65], the solution
to the conservative scheme (4.4), if converges, will converge to a weak solution
of (4.1).

In summary, to build a finite volume ENO scheme (4.4), given the cell
averages {Ju4} (we will often drop the explicit reference to the time variable
t), we proceed as follows:

Algorithm 4.1. Finite volume 1D scalar ENO and WENO Schemes.

1. Follow the Algorithm 3.1 in Sect. 3.1 for ENO, or the Algorithm 3.2 in
Sect. 3.2 for WENO, to obtain the k-th order reconstructed values u-+½

and u+ for all i;
2. Choose a monotone flux (e.g., one of (4.6) to (4.8)), and use (4.5) to

compute the flux f4+1 for all i;
2

3. Form the scheme (4.4).

Notice that the finite volume scheme can be applied to arbitrary nonuni-
form grids.

4.2 Finite Difference Formulation in the Scalar Case

We first assume the grid is uniform and solve (4.1) directly using a conserva-
tive approximation to the spatial derivative:

dit 1 (f+ 4.9)
dt Ax 2 2
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First order Godunov First order Lax-Friedrichs

1.2 1.2

0
0.8 - 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0- 0D

"-0.2 -0.2

-0.4 - -0.4 0

-0. - -0.6

-1 .0.5 0 0 1 -1 .0.6 0 0.5 1

Fourth order ENO, Godunov flux Fourth order ENO, Lax-Friedrichs flux

1.2 1.2

0.8 0.8

0.6 0.0

0.4 0.4

0.2 0.2

0 0

-0.2 -0.2

-0.4 -0.4

-0.6 -0.6

-1 -0.5 0 0.5 1 -1 -0.5 0 0.0

Fig. 4.1. First order (top) and fourth order (bottom) ENO schemes for the Burgers
equation, with the Godunov flux (left) and the Lax-Friedrichs flux (right). Solid
lines: exact solution; Circles: the computed solution at t = 4.
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where ui (t) is the numerical approximation to the point value u (xi, t), and
the numerical flux

satisfies the following conditions:

- j is a Lipschitz continuous function in all the arguments;
- f is consistent with the physical flux f, that is, f(u, ..., u) = f(u).

Again the Lax-Wendroff theorem [65] applies. The solution to the conser-
vative scheme (4.9), if converges, will converge to a weak solution of (4.1).

The numerical flux fi+ ½ is obtained by the ENO or WENO reconstruction
procedures, Algorithm 3.1 or 3.2, with ýU(x) f(u(x, t)). For stability, it is
important that upwinding is used in constructing the flux. The easiest and
the most inexpensive way to achieve upwinding is the following: compute the
Roe speed

f(ui+i) -f(ui)ai+½ 1 = •q1 - (4.10)

(when Uj+l = ui one should use -i+½ = f'(ui)) and

- if -i+½ > 0, then the the wind blows from the left to the right. We would2^

use v-.. for the numerical flux fi+
- if di+I < 0, then the wind blows from the right to the left. We would use

vt++ for the numerical flux fi+ ½

This produces the Roe scheme [82] at the first order level. For this reason,
the ENO scheme based on this approach was termed "ENO-Roe" in [90].

In summary, to build a finite difference ENO scheme (4.9) using the ENO-
Roe approach, given the point values {ui } (we again drop the explicit reference
to the time variable t), we proceed as follows:

Algorithm 4.2. Finite difference ID scalar ENO-Roe and WENO-
Roe schemes.

1. Compute the Roe speed ai+½ for all i using (4.10);
2. Identify Fi = f(uj) and use the ENO reconstruction Algorithm 3.1 or the

WENO reconstruction Algorithm 3.2, to obtain the cell boundary values
v.+ if di+½ > 0, or vt++if •+_<0;

3. If the Roe speed at + is positive

d+½ > 0,

then take the numerical flux as:

j+½ =v+31

otherwise, take the the numerical flux as:

4+1 =v+2 i~b½
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4. Form the scheme (4.9).

One disadvantage of the ENO-Roe approach is that entropy violating
solutions may be obtained, just like in the first order Roe scheme case. For
example, if ENO-Roe is applied to the Burgers equation

Ut + 2- =

with the following initial condition

UX ) - 1, if X<O0,
u01, if x>0,

it will converge to the entropy violating expansion shock:

-1, if x<0,u~xt)= 1, if x_> 0.

Local entropy correction could be used to rectify this [90]. However, it is
usually more robust to use a global "flux splitting":

f(u) = f+(u) + f-(u) (4.11)

where
df+(u) > 0, < 0. (4.12)

du - du -

We would need the positive and negative fluxes f- (u) to have as many deriva-
tives as the order of the scheme. This unfortunately rules out many popular
flux splittings (such as those of van Leer [101] and Osher [77]) for high order
methods in this framework.

The simplest smooth splitting is the Lax-Friedrichs splitting:

f:(u) = -(f(u) + au) (4.13)
2

where a is again taken as a = max, If' (u) I over the relevant range of u.
We note that there is a close relationship between a flux splitting (4.11)

and a monotone flux (4.5). In fact, for any flux splitting (4.11) satisfying
(4.12),

h(a, b) = f+(a) + f-(b) (4.14)

is clearly a monotone flux. However, not every monotone flux can be written
in the flux split form (4.11). For example, the Godunov flux (4.6) cannot.

With the flux splitting (4.11), we apply the the ENO or WENO recon-
struction procedures, Algorithm 3.1 or 3.2, with U(x) = f+(u(x,t)) and
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F(x) = f-(u(x, t)) separately, to obtain two numerical fluxes f+ and

and then sum them to get the numerical flux fA+ ½.
In summary, to build a finite difference ENO or WENO scheme (4.9) using

the flux splitting approach, given the point values {ui}, we proceed as follows:

Algorithm 4.3. Finite difference 1D scalar flux splitting ENO and
WENO schemes.

1. Find a smooth flux splitting (4.11), satisfying (4.12);
2. Identify vi = f+(ui) and use the ENO or WENO reconstruction proce-

dure, Algorithm 3.1 or 3.2, to obtain the cell boundary values v- , for

all i;
3. Take the positive numerical flux as

i+1 = Vi;

4. Identify i = f -(ui) and use the ENO or WENO reconstruction proce-
dures, Algorithm 3.1 or 3.2, to obtain the cell boundary values v+ for

all i;
5. Take the negative numerical flux as

2 + .

6. Form the numerical flux as

:ffi+½ + +!I

7. Form the scheme (4.9).

We remark that the finite difference scheme in this section and the finite
volume scheme in Sect. 4.1 are equivalent for one dimensional, linear PDE
with constant coefficients: the only difference is in the initial condition (the
finite difference version uses point values and the finite volume version uses
cell averages of the exact initial condition). Notice that the schemes are still
nonlinear in this case. However, this equivalency does not hold for a nonlinear
PDE. Moreover, we will see later that there are significant differences in
efficiency of the two approaches for multidimensional problems.

In the following we test the accuracy of the fifth order finite difference
WENO schemes on the linear equation:

ut + uý':O, -1< X<1

u(x, O) = uo(x) periodic.

In Table 4.1, we show the errors of the fifth order WENO scheme given by
the weights (3.28)-(3.29) with the smooth indicator (3.33), at time t = 1
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for the initial condition uo(x) = sin(irx), and compare them with the errors
of the linear 5-th order upstream central scheme (i.e. the scheme with the
linear weights d, as in (3.24)). We can see that fifth order WENO gives the
expected order of accuracy starting at about 40 grid points.

Table 4.1. Accuracy on ut ± ux = 0 with uo(x) = sin(irx).

Fifth order WENO scheme

N L. error L. order L1 error L1 order
10 2.98e-2 - 1.60e-2 -

20 1.45e-3 4.36 7.41e-4 4.43
40 4.58e-5 4.99 2.22e-5 5.06
80 1.48e-6 4.95 6.91e-7 5.01
160 4.41e-8 5.07 2.17e-8 4.99
320 1.35e-9 5.03 6.79e-10 5.00

Fifth order linear upwind-central scheme

N L.. error L. order L 1 error L1 order
10 4.98e-3 - 3.07e-3 -

20 1.60e-4 4.96 9.92e-5 4.95
40 5.03e-6 4.99 3.14e-6 4.98
80 1.57e-7 5.00 9.90e-8 4.99
160 4.91e-9 5.00 3.11e-9 4.99
320 1.53e-10 5.00 9.73e-11 5.00

In Table 4.2, we show errors for the initial condition uo(x) sin 4 (7rx).

The order of accuracy for the fifth order WENO settles down later than in
the previous example. Notice that this is the example for which ENO schemes
lose their accuracy [83], [87].

We emphasize again that the high order conservative finite difference ENO
and WENO schemes of third or higher order accuracy can only be applied
to a uniform grid or a smoothly varying grid, i.e. a grid such that a smooth
transformation

=(X)

will result in a uniform grid in the new variable ý. Here C must contain as
many derivatives as the order of accuracy of scheme calls for. If this is the
case, then (4.1) is transformed to

ut + ýf(u)ý = 0
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Table 4.2. Accuracy on ut + u. = 0 with uo(x) = sin 4 (jrx).

Fifth order WENO scheme

N L. error L.o order L1 error L, order
20 1.08e-1 - 4.91e-2 -
40 8.90e-3 3.60 3.64e-3 3.75
80 1.80e-3 2.31 5.00e-4 2.86
160 1.22e-4 3.88 2.17e-5 4.53
320 4.37e-6 4.80 6.17e-7 5.14
640 9.79e-8 5.48 1.57e-8 5.30

Fifth order linear upwind-central scheme

N L. error L. order L, error L 1 order
20 5.23e-2 - 3.35e-2 -

40 2.47e-3 4.40 1.52e-3 4.46
80 8.32e-5 4.89 5.09e-5 4.90
160 2.65e-6 4.97 1.60e-6 4.99
320 8.31e-8 5.00 4.99e-8 5.00
640 2.60e-9 5.00 1.56e-9 5.00

and the conservative ENO or WENO derivative approximation is then applied
to f(u)6. It is proven in [77] that this way the scheme is still conservative,
i.e. Lax-Wendroff theorem [65] still applies.

4.3 Provable Properties in the Scalar Case

Second order ENO schemes are also TVD (total variation diminishing), hence
have at least subsequences which converge to weak solutions. There is no
known convergence result for ENO schemes of degree higher than 2, even for
smooth solutions.

WENO schemes have better convergence results, mainly because their
numerical fluxes are smoother. It is proven [55] that WENO schemes converge
for smooth solutions. Also, Jiang and Yu [56] have obtained an existence
proof for traveling waves for WENO schemes. This is an important first step

towards the proof of convergence for shocked cases.
Even though there are very few theoretical results about ENO or WENO

schemes, in practice these schemes are very robust and stable. We caution
against any attempts to modify the schemes solely for the purpose of stability
or convergence proofs. In [89] we gave a remark about a modification of ENO
schemes, which keeps the formal uniform high order accuracy and makes
them stable and convergent for general multi dimensional scalar equations.
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However it was pointed out there that the modification is not computationally
useful, hence the convergence result has little value.

The remark in [89] is illustrative hence we reproduce it here. We start
with a flux splitting (4.11) satisfying (4.12), and notice that the first order
monotone scheme

dui -AI (f+(ui) - f(U- 1 ) + fi ) - (Ui)) R,(u)i (4.15)

dt 'Ax2

is convergent (also for multi space dimensions). We now construct a high order
ENO approximation in the following way: starting from the two point stencil
{xi- 1 , xi}, we expand it into a k+ 1 point stencil in an ENO fashion using the
divided differences of f+(u(x)). We then build the k-th degree polynomial
P+(x) which interpolates f+(u(x)) in this stencil. P-(x) is constructed in
a similar way, starting from the two point stencil {xi, xi+i}. The scheme is
finally defined as

duy d (P+(x) + P-(x)) •=.i =- Rk(u)i (4.16)dt dx

This scheme is clearly k-th order accurate but is not conservative. We now
denote the difference between the high order scheme (4.16) and the first order
monotone scheme (4.15) by

D(u)i = Rk(U)i -- R1(u)j, (4.17)

and limit it by
D (u)i = 7(D(u) , MAx'), (4.18)

where M > 0 and 0 < a < 1 are constants, and the capping function Yff is
defined by

a, if lal < b;
•7(a,b)= b, ifa> b;

-b, ifa< -b.

The modified ENO scheme is then defined by

dui
dt-T =k(U)i =_ Rl(u)i + D(u)j. (4.19)

We notice that, in smooth regions, the difference between the first order and
high order residues, D(u)j, as defined in (4.17), is of the size O(Ax), hence
the capping (4.18) does not take effect in such regions, if a < 1 or if a = 1
and M is large enough, when Ax is sufficiently small. This implies that the
scheme (4.19) is uniformly accurate. Moreover, since

Rk((u)i - R,(u)j < MAx0

by (4.18), the high order scheme (4.19) shares every good property of the first
order monotone scheme (4.15), such as total variation boundedness, entropy
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conditions, and convergence. From a theoretical point of view, this is the
strongest result one could possibly hope for a high order scheme. However, the
mesh size dependent limiting (4.18) renders the scheme highly impractical:
the quality of the numerical solution will depend strongly on the choice of
the parameters M and a, as well as on the mesh size Ax.

4.4 Systems

We only consider hyperbolic m x m systems, i.e. the Jocobian f'(u) has m
real eigenvalues

A, (u) < ...< _!,ýAm(U) (4.20)

and a complete set of independent eigenvectors

ri (U),...,rm(U) (4.21)

We denote the matrix whose columns are eigenvectors (4.21) by

R(u) = (rx(u), ... ,rm(u)) (4.22)

Then clearly
R-'(u) f'(u) R(u) = A(u) (4.23)

where A(u) is the diagonal matrix with Ai(u),...,Am(U) on the diagonal.
Notice that the rows of R-l(u), denoted by li(u), ... , lm(u) (row vectors), are
left eigenvectors of f'(u):

li(u)f'(u) = Ai(u)li(u), i = 1,...,m. (4.24)

There are several ways to generalize scalar ENO or WENO schemes to
systems.

The easiest way is to apply the ENO or WENO schemes in a component
by component fashion. For the finite volume formulation, this means that we
make the reconstruction using ENO or WENO for each of the components of
u separately. This produces the left and right values u± at the cell interface

xj+ i. An exact or approximate Riemann solver, h(u-+, u+), is then used

to build the scheme (4.4)-(4.5). The exact Riemann solver is given by the
exact solution of (4.1) with the following step function as initial condition

(U-+, x < 0;u(xO0) = ++½ x 0 (4.25)

evaluated at the center x = 0. Notice that the solution to (4.1) with the
initial condition (4.25) is self-similar, that is, it is a function of the variable

f, hence is constant along x = 0. If we denote this solution by ui+A,
then the flux is taken as

h(u- 1 u+ f f(Ui )i+ t i+ 1
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In the scalar case, the exact Riemann solver gives the Godunov flux (4.6).
Exact Riemann solver can be obtained for many systems including the Euler
equations of compressible gas, which is used very often in practice. However,
it is usually very costly to get this solution (for Euler equations of compress-
ible gas, an iterative procedure is needed to obtain this solution, see [94]). In
practice, approximate Riemann solvers are usually good enough. As in the
scalar case, the quality of the solution is usually very sensitive to the choice
of approximate Riemann solvers for lower order schemes (first or second or-
der), but this sensitivity decreases with an increasing order of accuracy. The
simplest approximate Riemann solver (albeit the most dissipative) is again
the Lax-Friedrichs solver (4.8), except that now the constant a is taken as

a = max max IAj(u)I (4.26)
U l(jm

where Aj (u) are the eigenvalues of the Jacobian f'(u), (4.20). The maximum
is again taken over the relevant range of u.

We summarize the procedure in the following

Algorithm 4.4. Component-wise finite volume 1D system ENO and
WENO schemes.

1. For each component of the solution ý9, apply the scalar ENO Algorithm
3.1 or WENO Algorithm 3.2 to reconstruct the corresponding component
of the solution at the cell interfaces, u, for all i;

i~i2

2. Apply an exact or approximate Riemann solver to compute the flux fA+ ½

for all i in (4.5);
3. Form the scheme (4.4).

El

For the finite difference formulation, a smooth flux splitting (4.11) is again
needed. The condition (4.12) now becomes that the two Jacobians

8f+(U) Of(u) (4.27)

Ou au
are still diagonalizable (preferably by the same eigenvectors R(u) as for
f'(u)), and have only non-negative / non-positive eigenvalues, respectively.
We again recommend the Lax-Friedrichs flux splitting (4.13), with a given
by (4.26), because of its simplicity and smoothness. A somewhat more com-
plicated Lax-Friedrichs type flux splitting is:

fl (fu ± R(u) AR-1(u)u)f•(u)1

where R(u) and R-'(u) are defined in (4.22), and

-A = diag(Ai,...,-Xm)
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where AX = maxu I Aj (u) 1, and the maximum is again taken over the relevant
range of u. This way the dissipation is added in each field according to the
maximum size of eigenvalues in that field, not globally. One could also use
other flux splittings, such as the van Leer splitting for gas dynamics [101].
However, for higher order schemes, the flux splitting must be sufficiently
smooth in order to retain the order of accuracy.

With these flux splittings, we can again use the scalar recipes to form the
finite difference scheme: just compute the positive and negative fluxes f,+

and .j component by component.

We summarize the procedure in the following

Algorithm 4.5. Component-wise finite difference 1D system ENO
and WENO schemes.

1. Find a flux splitting (4.11). The simplest example is the Lax-Friedrichs
flux splitting (4.13), with a given by (4.26);

2. For each component of the solution u, apply the scalar Algorithm 4.3 to
reconstruct the corresponding component of the numerical flux fi+½;

3. Form the scheme (4.9).

These component by component versions of ENO and WENO schemes
are simple and cost effective. They work reasonably well for many problems,
especially when the order of accuracy is not high (second or sometimes third
order). However, for more demanding test problems, or when the order of
accuracy is high, it is usually advisable to use the following more costly, but
much more robust characteristic decompositions.

To explain the characteristic decomposition, we start with a simple ex-
ample where f(u) = Au in (4.1) is linear and A is a constant matrix. In
this situation, the eigenvalues (4.20), the eigenvectors (4.21), and the related
matrices R, R 1 and A (4.22)-(4.23), are all constant matrices. If we define
a change of variable

v = R-1 u, (4.28)

then the PDE (4.1) becomes diagonal:

vt + Avz = 0 (4.29)

that is, the m equations in (4.29) are decoupled and each one is a scalar linear
convection equation of the form

wt + Ajwý = 0. (4.30)

We can thus use the reconstruction or flux evaluation techniques for the scalar
equations, discussed in Sections 4.1 and 4.2, to handle each of the equations
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in (4.30). After we obtain the results, we can "come back" to the physical
space u by using the inverse of (4.28):

u=Rv (4.31)

For example, if the reconstructed polynomial for each component j in (4.29)
is denoted by qj (x), then we form

q, (x)

q(x) = (4.32)

k qm(x)

and obtain the reconstruction in the physical space by using (4.31):

p(x) = Rq(x) (4.33)

The flux evaluations for the finite difference schemes can be handled similarly.
We now come to the situation where f'(u) is not constant. The trouble

is that now all the matrices R(u), R-1(u) and A(u) are dependent upon u.
We must "freeze" them locally in order to carry out a similar procedure as in
the constant coefficient case. Thus, to compute the flux at the cell boundary
xi+ , we would need an approximation to the Jocobian at the middle value
ui+½. This can be simply taken as the arithmetic mean

21

ui+= (ui + ui+i) , (4.34)

or as a more, elaborate average satisfying some nice properties, e.g. the mean
value theorem

f(ui+l) - f(uj) = f'(ui+½)(ui+l - uj). (4.35)

Roe average [82] is such an example for the compressible Euler equations of
gas dynamics and some other physical systems. It is also possible to use two
different one-sided Jacobians at a higher computational cost [28].

Once we have this u+i+, we will use R(ui+½), R-l(ui+½) and A(ui+½) to
help evaluating the numerical flux at xi+ ½. We thus omit the notation i +1

and still denote these matrices by R, R-1 and A, etc. We then repeat the
procedure described above for linear systems. The difference here being, the
matrices R, R-1 and A are different at different locations xj+½, hence the
cost of the operation is greatly increased.

In summary, we have the following procedures:

Algorithm 4.6. Characteristic-wise finite volume 1D ENO and WENO
schemes.
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1. Compute the divided or undivided differences of the cell averages V, for
all i;

2. At each fixed xi+½, do the following:
(a) Compute an average state ui+½, using either the simple mean (4.34)

or a Roe average satisfying (4.35);
(b) Compute the right eigenvectors, the left eigenvectors, and the eigen-

values of the Jacobian f'(ui+½), (4.20)-(4.23), and denote them by

R = R(ui+½), R- 1 = R-1 (u~i+), A = A(ui+½);

(c) Transform all those differences computed in Step 1, which are in the
potential stencil of the ENO and WENO reconstructions for obtaining
u1+½, to the local characteristic fields by using (4.28). For example,

-j = R-1 lj, j in a neighborhood of i;

(d) Perform the scalar ENO or WENO reconstruction Algorithm 4.1,
for each component of the characteristic variables F, to obtain the
corresponding component of the reconstruction v

(e) Transform back into physical space by using (4.31):

U± Rv±

3. Apply an exact or approximate Riemann solver to compute the flux 4 +

for all i in (4.5); then form the scheme (4.4).

Similarly, the procedure to obtain a finite difference ENO-Roe type scheme
using the local characteristic decomposition is:

Algorithm 4.7. Characteristic-wise finite difference 1D system, Roe-
type schemes.

1. Compute the undivided differences of the flux f(u) for all i;
2. At each fixed xi+½, do the following:

(a) Compute an average state ui+½, using either the simple mean (4.34)
or a Roe average satisfying (4.35);

(b) Compute the right eigenvectors, the left eigenvectors, and the eigen-
values of the Jacobian f'(u~i+), (4.20)-(4.23), and denote them by

R = R(u~i+), R-1 = R-1(u~i+), A = A(ui+½);

(c) Transform all those differences computed in Step 1, which are in the
potential stencil of the ENO and WENO reconstructions for obtaining
the flux 4+16, to the local characteristic fields by using (4.28). For
example,

vj = R- 1 f(uj), j in a neighborhood of i;
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(d) Perform the scalar ENO or WENO Roe-type Algorithm 4.2, for each
component of the characteristic variables v, to obtain the correspond-
ing component of the flux •ji+. The Roe speed di+½. is replaced by
the eigenvalue Al (ui+ ½) for the l-th component of the characteristic
variables v;

(e) Transform back into physical space by using (4.31):

3. Form the scheme (4.9).

Finally, the procedure to obtain a finite difference flux splitting ENO or
WENO scheme using the local characteristic decomposition is:

Algorithm 4.8. Characteristic-wise finite difference 1D system, flux
splitting schemes.

1. Compute the undivided differences of the flux f(u) and the solution u for
all i;

2. At each fixed xjpi+, do the following:
(a) Compute an average state uj+½, using either the simple mean (4.34)

or a Roe average satisfying (4.35);
(b) Compute the right eigenvectors, the left eigenvectors, and the eigen-

values of the Jacobian f'(ui+½), (4.20)-(4.23), and denote them by

R = R(ui+½), R- 1 = R-1 (uj+½), A = A(uj+½);

(c) Transform all those differences computed in Step 1, which are in the
potential stencil of the ENO and WENO reconstructions for obtaining
the flux 4+1, to the local characteristic fields by using (4.28). For
example,

vj = R-1 uj, gj = R-1 f(uj), j in a neighborhood of i;

(d) Perform the scalar flux splitting ENO or WENO Algorithm 4.3, for
each component of the characteristic variables, to obtain the corre-
sponding component of the flux §1 ½. For the most commonly used

Lax-Friedrichs flux splitting, we can use, for the l-th component of
the characteristic variables, the viscosity coefficient

a = max I A(uj)I;I:5j<N

Local Lax Friedrichs flux splitting can also be used here, when a is
chosen as a maximum of IAt (uj) I and IA, (ui+l) 1, plus perhaps several
other neighbors, rather than as a maximum over the whole domain.
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(e) Transform back into physical space by using (4.31):

f =^ R±i+

3. Form the flux by taking
A+ +1 + i

= f2+½

and then form the scheme (4.9).

There are attempts recently to simplify this characteristic decomposition.
For example, for the compressible Euler equations of gas dynamics, Jiang and
Shu [55] used smooth indicators based on density and pressure to perform
the so-called pseudo characteristic decompositions. There are also second and
sometimes third order component ENO type schemes [75], [70], with limited
success for higher order methods.

4.5 Boundary Conditions

For periodic boundary conditions, or problems with compact support for the
entire computation (not just the initial data), there is no difficulty in imple-
menting boundary conditions: one simply set as many ghost points as needed
using either the periodicity condition or the compactness of the solution.

Other types of boundary conditions should be handled according to their
type: for reflective or symmetry boundary conditions, one would set as many
ghost points as needed, then use the symmetry/antisymmetry properties to
prescribe solution values at those ghost points. For inflow or partially in-
flow (e.g. a subsonic outflow where one of the characteristic waves flows in)
boundary conditions, one would usually use the physical inflow boundary
condition at the exact boundary (for example, if xi is the left boundary and
a finite volume scheme is used, one would use the2 given boundary value Ub
as u7 in the monotone flux at x1; if x0 is the left boundary and a finite22

difference scheme is used, one would use the given boundary value Ub as uo).
Apart from that, the most natural way of treating boundary conditions for
the ENO scheme is to use only the available values inside the computational
domain when choosing the stencil. In other words, only stencils completely
contained inside the computational domain is used in the ENO stencil choos-
ing process described in the previous algorithms. In practical implementation,
in order to avoid logical structures to distinguish whether a given stencil is
completely inside the computational domain, one could set all the ghost val-
ues outside the computational domain to be very large with large variations
(e.g. setting u-j = (10j) 10 if x-j, for j = 1, 2,..., are ghost points). This way
the ENO stencil choosing procedure will automatically avoid choosing any
stencil containing ghost points. Another way of treating boundary conditions
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is to use extrapolation of suitable order to set the values of the solution in
all necessary ghost points. For scalar problems this is actually equivalent to
the approach of using only the stencils inside the computational domain in
the ENO procedure. WENO can be handled in a similar fashion.

Stability analysis (GKS analysis [39], [98]) can be used to study the linear
stability when the boundary treatment described above is applied to a fixed
stencil upwind biased scheme. For most practical situations the schemes are
linearly stable [3].

5 Reconstruction and Approximation in Multi
Dimensions

In this section we describe how the ideas of reconstruction and approximation
in Sect. 2 are generalized to multi space dimensions. We will concentrate our
discussion in 2D, although things carry over to higher dimensions as well.

In the first two subsections we will consider Cartesian grids, that is, the
domain is a rectangle

[a, b] x [c, d] (5.1)

covered by cells

!ij =- [xj_½,xj+½J x [yj-½,y+½], 1 • i < Nx, 1 < j _ Ny (5.2)

where
a = xi < xa < ... < xN_½ < XN.+i -b,

2 2 2 2

and
C.= Y! < Y! < ... < YNy-½ < YNy+½ d.

The centers of the cells are1(- ! + i j (1( yi) (53
(Xi, yj), Xi -- 2 2)_ +x+ 2 y2 2-•y_ Y+ 5

and we still use

ZAXj _xi+½I - xi_ ½, i =1, 2, .. ,Nx (5.4)

and
"Ayj yj+ 2"- y_, j =1, 2,..., Ny (5.5)

to denote the grid sizes. We denote the maximum grid sizes by

Ax max Axi, 'Ay max Ayj, (5.6)l!ýi<Ný l•-j:-Nuy ,

and assume that Ax and Ay are of the same magnitude (their ratio is
bounded from above and below during refinement). Finally,

A = max(Ax, Ay). (5.7)
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5.1 Reconstruction from Cell Averages - Rectangular Case

The approximation problem we will face, in solving hyperbolic conservation
laws using cell averages (finite volume schemes, see Sect. 7.1), is still the
following reconstruction problem.

Problem 5.1. Two dimensional reconstruction for rectangles.
Given the cell averages of a function v(x, y):

V;U 13 .= 1 y j ' fY- x_ v(ý,n)d~dq, (5.8)

i -- 1, 2, ..., N, j = 1, 2, ..., Ny,

find a polynomial pij (x, y), preferably of degree at most k - 1, for each cell
Iij, such that it is a k-th order accurate approximation to the function v(x, y)
inside Iij:

pij(x,y) = v(x,y) + O(Ak), (x,y) E Iij, (5.9)
i = 1, ..., N, j = 1, ...,gNy.

In particular, this gives approximations to the function v(x, y) at the cell
boundaries

v Pj= pXi(xi+1,y), v + 1 = Pij(xi_ ,Y),i+1,Y 2 -I,2
i l..Nx, yj_½i < y < yj+½

v-. 1 pij (x) Yj+½), +j1ýPjXYj1)
j,+ 2 VX,_ ½f 2--Pj(,y _½)

j =1,...Ny, Xi_½1 : <-Xjx+½1

which are k-th order accurate:

v ±½I =v(xj+½,y)+0(Ak), i=0,1,...,YN, yj_] <y<yj+½ (5.10)

and

vx,½ =v(X, Yj+½.) + O(,Ak), j= O,1, ...,Ny, xj-_½ < X < Xj+½.(.1

Again we will not discuss boundary conditions in this section. We thus
assume that jij is also available for i < 0, i > Nx and for j • 0, j > Ny if
needed.

In the following we describe a general procedure to solve Problem 5.1.
Given the location Iij and the order of accuracy k, we again first choose a

"stencil", based on k(k+l) neighboring cells, the collection of these cells still
being denoted by S(i, j). We then try to find a polynomial of degree at most
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k - 1, denoted by p(x, y) (we again drop the subscript ij when it does not
cause confusion), whose cell average in each of the cells in S (i, j) agrees with
that of v(x, y):

[ 2 J 2I+½ p( ,71)d< d7 = VUin, if It. E S(i,j). (5.12)

2 2

We first remark that there are now many more candidate stencils S(ij)
than in the 1D case, More importantly, unlike in the 1D case, here we en-
counter the following essential difficulties:

- Not all of the candidate stencils can be used to obtain a polynomial
p(x, y) of degree at most k - 1 satisfying condition (5.12).
For example, it is an easy exercise to show that neither existence nor
uniqueness holds, if one wants to reconstruct a first degree polynomial
p(x, y) satisfying (5.12) for the three horizontal cells

S(i,j) = {!- w, Ii, 141A

To see this, let's assume that

Ii-lj = [-2A, -A] x [0, A], Iij = [-A, 0] x [0, A], I+l,j= [0, A] x [0, A],

and the first degree polynomial p(x, y) is given by

p(x, y) = a +,3x + yy

then condition (5.12) implies

a +sA2• 2A ' - A Vi+l,j

which is a singular linear system for a, 03 and -y.
- Even if one obtains such a polynomial p(x, y), there is no guarantee that

the accuracy conditions (5.9) will hold. We again use the same simple
example. If we pick the function

v(x, y) = 0,

then one of the polynomials of degree one satisfying the condition (5.12)
is

p(x,y) = A - 2y

clearly the difference

v(x, 0) -p(x,0) = -A

is not at the size of 0(A2 ) in xi- <± x < xj+½, as is required by (5.9).
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This difficulty will be more profound for unstructured meshes such as
triangles. See, for example, [1], and Sect. 5.3.

For rectangular meshes, if we use the tensor products of 1D polynomials,
i.e. use polynomials in Qk-1:

k-1 k-i

p(x,y)= _Z aimxly
m=0 1=0

then things can proceed as in 1D. We restrict ourselves in the following tensor
product stencils:

Sr 8(i,j) = {Ijm : i - r <1 < i + k - 1 - r, j -s < m < j + k - 1 - s}

then we can address Problem 5.1 by introducing the two dimensional primi-
tives:

V(x, y) = / / v(ý, 7)d~dn.

Clearly
Y X

rv+1 fa .+1
V (xi+I, yd +) == 2 2 hm'AXIAYM,

2 2 -- 00 M-E 00 1=-00

hence as in the 1D case, with the knowledge of the cell averages F we know
the primitive function V exactly at cell corners.

On a tensor product stencil

Srs,(i, j) = {(xj+½,y,,Y+½) : i-r-1 < 1 < i+k-l-r,j-s-1 <_ m < j+k-l-s}

there is a unique polynomial P(x, y) in Qk which interpolates V at every
point in Srs (i, j). We take the mixed derivative of the polynomial P to get:

p(x, y) =O2p(x, y)
i9xOy

then p(x, y) is in Qk-1, approximates v(x, y), which is the mixed derivative
of V(x, y), to k-th order:

v(x,y) - p(x,y) = 0 fY)

and also satisfies (5.12):

1 Ym'+½ [%+½ p(6, i?) d6 dq

I [Y_+½ X+1 2P
(6 7?) d6yd7
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= I1 (P(xi+., Ym+½1) - P(Xz+½1 , Ym-_½)zAxj'Aym 2 22 2

-P(xj-,Ym'+.) + P(X-I½,Ym-I))

_ V(Xi+½,Y) +½) + V(Xl+½,Ym _½)
-V(xl-½I, Ym+) 0+ Y(x1_-I, Ym-½)0

AxIAym •1< X_ v(,i?)d dq = Vim,

i - r < 1 <i + k - 1-r,

j - s < m < j + k-i-s.

There is a practical way to perform the reconstruction in 2D. We first
perform a one dimensional reconstruction (Problem 2.1), say in the y direc-
tion, obtaining one dimensional cell averages of the function v in the other
direction (say in the x direction). We then perform a reconstruction in the
other direction. Notice that if ENO is used in each direction, the effective
two dimensional stencil may not be a tensor product.

It should be remarked that the cost to do this 2D reconstruction is very
high: for each grid point, if the cost to perform a one dimensional reconstruc-
tion is c, then we need 2c per grid point to perform this 2D reconstruction.
In general n space dimensions, the cost grows to nc.

We also remark that to use polynomials in Qk-1 is a waste: to get the
correct order of accuracy only polynomials in pk-1 is needed. However, there
is no natural way of utilizing polynomials in pk-1 (see the comments above,
the paper of Abgrall [1], and Sect. 5.3).

The reconstruction problem, Problem 5.1, can also be raised for general,
non-Cartesian meshes, such as triangles. However, the solution becomes much
more complicated. For discussions, see for example [1] and Sect. 5.3.

5.2 Conservative Approximation to the Derivative from Point
Values

The second approximation problem we will face, in solving hyperbolic con-
servation laws using point values (finite difference schemes, see Sect. 7.2), is
again the following problem in obtaining high order conservative approxima-
tion to the derivative from point values [89,901. As in the 1D case, here we
also assume that the grid is uniform in each direction. We again ignore the
boundary conditions and assume that vij is available for i < 0 and i > N•,
and for j < 0 and j > Ny.

Problem 5.2. Two dimensional conservative approximation to the
derivatives.
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Given the point values of a function v (x, y):

vii = v(xi,yj), i= 1,2,...,Nx, j=1,2,..., Ny, (5.13)

find numerical flux functions

i+½,j - (Vi-r,j, ..., Vi+k-l-rj), i = O, 1, ... , Nx (5.14)

and
f)i,j- 1- f)((V,,j- ",'" Vi,j+k-l)' - j = 0, 1,..., Ny (5.15)

such that the flux differences approximate the derivatives vx (x, y) and vy (x, y)
to k-th order accuracy:

1 vi+½j-b-!_j)=vx(xi,yj)+O(Axk), i = 0, 1,..,Nx, (5.16)

and

1 i,j+- -i,j½) = VY(Xi,yj) + O(Ayk), j = 0,,..., Ny, (5.17)

The solution of this problem is essential for the high order conservative
schemes based on point values (finite difference) rather than on cell averages
(finite volume).

Having seen the complication of reconstructions in the previous subsec-
tion for multi space dimensions, it is a good relieve to see that conservative
approximation to the derivative from point values is as simple in multi di-
mensions as in 1D. In fact, for fixed j, if we take

W (X) = V(X, Yj)

then to obtain vx(xi, yj) = w'(xi) we only need to perform the one dimen-
sional procedure in Sect. 2.2, Problem 2.2, to the one dimensional function
w(x). Same thing for vy(x,y).

As in the 1D case, the conservative approximation to derivatives, of third
order accuracy or higher, can only be applied to uniform or smoothly varying
meshes (curvilinear coordinates). It cannot be applied to general unstructured
meshes such as triangles, unless conservation is given up.

5.3 Reconstruction from Cell Averages - Triangular Case

Assuming that we have a triangulation with N triangles

{A 0 , A1 , ... , AN}, (5.18)
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the reconstruction problem similar to Problem 5.1, which we will face, in solv-
ing hyperbolic conservation laws using cell averages (finite volume schemes,
see Sect. 7.1), is the following:

Problem 5.3. Two dimensional reconstruction for triangles.
Given the cell averages of a function v(x, y):

Si= 1,2,...,N, (5.19)

here IA I is the area of the triangle Aj, find a polynomial pi(x, y), of degree
at most k - 1, for each triangle Aj, such that it is a k-th order accurate
approximation to the function v(x, y) inside Ai:

pi(x, y) = v(x, y) + O(Ak), (x, y) E Aj, i = 1, ..., N. (5.20)

Here we again use A to denote a typical length of the triangles, for example
the longest side of the triangles. n

j 0 i
G

Fig. 5.1. A typical stencil

In particular, (5.20) gives approximations to the function v(x, y) at the
triangle boundaries, which are needed in forming the finite volume schemes
in Sect. 7.1.

Again we will not discuss boundary conditions in this subsection. We thus
assume that vi is also available for triangles A2 outside the boundary of the
given triangulation if needed.

The following is still a general procedure to solve Problem 5.3.
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Given the location Ai and the order of accuracy k, we again first choose a
"stni"4 bsdo k(k+l)"stencil", based on ... - k2 neighboring triangles, the collection of these
triangles being denoted by S(i). We then try to find a polynomial of degree
at most k - 1, denoted by p(x, y) (we again drop the subscript i when it does
not cause confusion), whose cell average in each of the triangle in S(i) agrees
with that of v(x, y):

f v (ý, ) ddj = -- j, if Aj E S(i). (5.21)

Notice that (5.21) will give us a m x m linear system. If this linear system
has a unique solution, S(i) is called an admissible stencil. Of course, in prac-
tice, we also have to worry about any ill conditioned linear system even if
it is invertible. For k = 1, a stencil formed by Ai itself plus two immediate
neighboring triangles is admissible for most triangulations. Thus second or-
der reconstruction is quite easy. We emphasize here that when we talk about
order of accuracy in this section it applies only on the approximation level,
and also only for "reasonable" triangulations. We will not go into the details
of classifying such triangulations.

For a third order reconstruction we need a quadratic polynomial (k = 2),
which has m = 6 degrees of freedom. This time, some of the stencils consisting
of Ai and 5 of its neighbors may not be admissible. It seems that the most
robust way is the least square reconstruction procedure suggested by Barth
and Frederickson [7]. For the control volume triangle Aa (see Fig. 5.1), let
Ai, aj, Ak be its three neighbors, and aia, aib be the two neighbors (other
than A0 ) of Aj, and so on, we determine the quadratic polynomial p2 by
requiring that p2 has the same cell average as v on A0 ,, and also p2 has the
same cell average as v on

{ Ai, aa, Aib, a4, Aja, Ajb, Ak, Aka, Akb },

but only in a least-square sense (as this is an over-determined system). Notice
that some of the neighbors' neighbors (Aia, Aib, Aja, ...) may coincide. For
example, Aib might be the same as Aja. This, however, does not affect the
least square procedure to determine p2 .

For a fourth order reconstruction we need a cubic polynomial (k = 3),
which has m, = 10 degrees of freedom. If we only consider the case where
ia, ib, ja, jb, ka, kb are distinct in the stencil (see Fig. 5.1), it seems that we
can construct the cubic polynomial p3 by requiring that its cell average agrees
with that of v on each triangle in the 10-triangle stencil shown in Fig. 5.1,
for most triangulations.

6 ENO and WENO Reconstruction and Approximation
in Multi Dimensions

For solving hyperbolic conservation laws in multi space dimensions, we are
again interested in the class of piecewise smooth functions. We define a piece-
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wise smooth function v(x, y) to be such that, for each fixed y, the one dimen-
sional function w(x) = v(x, y) is piecewise smooth in the sense described in
Sect. 3. Likewise, for each fixed x, the one dimensional function w(y) = v(x, y)
is also assumed to be piecewise smooth. Such functions are again "generic"
for solutions to multi dimensional hyperbolic conservation laws in practice.

In the previous section, we have already discussed the problems of re-
construction and conservative approximations to derivatives in multi space
dimensions. For structured meshes, both the reconstruction and the conser-
vative approximation can be obtained from one dimensional procedures. For
unstructured meshes, the procedure has to be truly two dimensional.

6.1 Structured Meshes

For a rectangular mesh, we can proceed using the one dimensional results.
For the reconstruction, we first use a one dimensional ENO or WENO re-
construction procedure, Algorithm 3.1 or 3.2, on the two dimensional cell
averages, say in the y direction, to obtain one dimensional cell averages in x
only. Then, another one dimensional reconstruction in the remaining direc-
tion, say in the x direction, is performed to recover the function itself, again
using the one dimensional ENO or WENO methodology, Algorithm 3.1 or
3.2.

For the conservative approximation to derivatives, since they are already
formulated in a dimension by dimension fashion, one dimensional ENO and
WENO procedures can be trivially applied. In effect, the FORTRAN program
for the 2D problem is the same as the one for the 1D problem, with an outside
"do loop".

What happens to general geometry which cannot be covered by a Carte-
sian grid?

If the domain is smooth enough, it usually can be mapped smoothly to a
rectangle (or at least to a union of non-overlapping rectangles). That is, the
transformation

ý = ý (x) Y), 77 = 7Ax, y) (6.1)

maps the physical domain Q2 where (x, y) belongs, to a rectangular compu-
tational domain

a < • < b, c < i: <_d. (6.2)

We require the transformation functions (6.1) to be smooth (i.e. it has as
many derivatives as the accuracy of the scheme calls for). Using chain rule,
we could write, for example,

vx = ýXvý + 7v1 (6.3)

We can then use our ENO or WENO approximations on vý and v,, as they
are now defined in rectangular domains. The smoothness of ýx and 77x will
guarantee that this leads to a high order approximation to vx as well through



High Order ENO and WENO Schemes for CFD 489

(6.3). It is proven in [77] that this way the scheme is still conservative, i.e.
Lax-Wendroff theorem [65] still applies. For Euler equations of gas dynamics
or other homogeneous of degree zero systems, it is also possible to write the
system in the new ý and 7 variables as a strongly conservative system, see
[77].

If the domain is really ugly, or if one wants to use unstructured meshes for
other purposes (e.g. for adaptivity), then ENO and WENO approximations
for unstructured meshes must be studied. This will be discussed briefly in
the next subsection.

6.2 Unstructured Meshes

For unstructured meshes a truly two dimensional ENO or WENO reconstruc-
tion must be carried out. We will present here one approach, adopted by Hu
and Shu in [49], [50], for third and fourth order WENO reconstructions. Al-
ternative (lower order) WENO reconstruction procedures can also be found
in [32]. For an ENO reconstruction procedure, we refer the readers to [1] and
[97].

We start with the third order reconstruction. A key step in building a high
order WENO scheme based on lower order polynomials is carried out in the
following. We want to construct several linear polynomials whose weighted
average will give the same result as the quadratic reconstruction p2 at each
quadrature point (the weights are different for different quadrature points).
Referring to Fig. 5.1, we can build the following 9 linear polynomials by
agreeing with the cell averages of v on the following stencils: Pi on triangles
0, j, k, P2 on triangles 0, k, i, P3 on triangles 0, i, j, P4 on triangles 0, i, ia, P5 on
triangles 0, i, ib, P6 on triangles 0, j, ja, p7 on triangles 0, j, jb, Ps on triangles
0, k, ka, and pg on triangles 0, k, kb. For each quadrature point (xG, yG), we
want to find the linear weights -y, such that the linear polynomial obtained
from a linear combination of these Ps

9
R(x, y) = E-y ps(x, y) (6.4)

s=1

satisfies
R(XG, YG) = p2(XG, yG) (6.5)

where p2 is defined before in Sect. 5.3 using the least squares procedure, for
arbitrary choices of cell averages

{00, Ui, ij, Uk, Uia, Uib, Ujia, Ujb, Uka, Uikb}. (6.6)

Since both the left side and the right side of the equality (6.5) are linear in
the cell averages (6.6), for the equality to hold for arbitrary W2's in (6.6) one
must have all 10 coefficients of the W2's to be identically zero (when all terms
are moved to one side of the equality), which leads to 10 linear equations for
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the nine weights %ys. This looks like an over-determined system, but is in fact
under-determined of rank 8, allowing for one degree of freedom in the choice
of the nine -y.

Before explaining this, we first look at a simpler but illustrative one di-
mensional example. Let us denote Ij, j = 0, 1,2, as three equal sized consec-
utive intervals. The two linear polynomials Ps, where P, agrees with u on cell
averages in the intervals 10 and I,, and P2 agrees with u on cell averages in
the intervals I and 12, give the following two second order approximations
to the value of u at the point xa (the boundary of I, and 12):

1 3 1 1
-- U2 0 +• iii, 2Ul + ýi!2. (6.7)

The quadratic polynomial p2, which agrees with u on cell averages in the
intervals 10, 1, and 12, gives the following third order approximation to the
value of u at the point xg:

2

1 5 1
- 1 iO + 5ii + 1U. (6.8)

We would like to find -y, such that

1 1 1 5 1
7'1 -Uo+ fil) + 72 (fijl+ U2) = -- fto + -iti + -fil (6.9)

for arbitrary Ui's. This leads to the following three equations:

1 1 3 1 5 1 1-2 71 6 5971 + 5972 2 792 = 3,

for the two unknowns -yj and -y2. It looks like an over-determined system but
is in fact rank 2 and has a unique solution

1 2
71 , 72 =Y -

The reason can be understood if we ask for the validity of the equality (6.9)
in the cases of u = 1, u = x and u - x2 . Clearly if (6.9) holds in these three
cases then it holds for arbitrary choices of Ui's. The crucial observation is that
(6.9) holds for both u = 1 and u = x as long as y' + -y2 = 1, as all three
expressions in (6.7) and (6.8) reproduce linear functions exactly. Hence the
equality (6.9) is valid for all the three cases u = 1, u = x and u = x2 with
only two conditions: -yi + -y2 = 1 and another one obtained when u = x2,
resulting in a solvable 2 x 2 system for -.

The same argument can be applied in the current two dimensional case.
Although there are 10 linear equations for the nine weights , resulting from
the equality (6.5), we should notice that the equality (6.5) is valid for all
three cases u = 1, u = x and u = y under only one constraint on -, namely
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9 s= 1, again because ps(x) and p2 (x) all reproduce linear functions
exactly. Thus we can eliminate two equations from the ten, resulting in a
rank 8 system with one degree of freedom in the solution for -Ys. In practice,
we obtain the solution -y for s > 2 with 7y as the degree of freedom.

Note that there are situations when ia, ib, ja, jb, ka, kb might not be dis-
tinct, in these cases, we simply discard some of the p,, or just set the cor-
responding coefficient -y to zero. For example, if ib = ja, we will just use
P1,P2,P3,P4,P5,P7,P8,P9 and discard P6. In this case there is one fewer coef-
ficient but also one fewer condition to satisfy for (6.5), as there is one fewer
triangle in the stencil. The discussion carried out above still applies.

The first effort we would like to make is to use this degree of freedom to
obtain a set of non-negative -ys, which is important for the WENO procedure.
Unfortunately, it turns out that, for many triangulations, this is impossible.
Some grouping is needed and is discussed next. We want to group these 9
linear polynomials into 3 groups:

9 3

E 7"sP"(X, Y) EtA X
S=1 s=1

each P, (x, y) being still a linear polynomial and a second order approximation
to u, with positive coefficients '' > 0. We also require the stencils correspond-
ing to the three new linear polynomials P, (x, y) to be reasonably separated,
so that when shocks are present, not all stencils will contain the shock under
normal situations.

The grouping we will introduce in the following works for most triangula-
tions. There are however cases when it does give some negative coefficients,
especially when one is doing adaptive meshing and is near the adaptively
refined regions where triangle sizes are changing very abruptly. In such cases
one would need to use a Lax-Friedrichs like procedure, namely breaking each
coefficient ý, = 2ý, - % and collecting the three positive terms and the
three negative terms separately to obtain WENO weights. This procedure
is currently being developed by Hu and Shu and have been performing well
numerically in our preliminary tests. It will appear in a future publication.
In the following we will only consider those triangulations when our grouping
strategy will produce positive weights.

For the first quadrature point on side i (G1 in Fig. 5.1), Group 1 contains
P2 (0, k, i), p4 (0, i, ia), and P (0, i, ib),

P1 = (0Y2P2 + 70 4 + 0Y5P5)/1(72 -- 4 +- 5), '1 = 72 + 74 + 'Y5,

Group 2 contains p3 (O,i,j), P6 (0,j, ja), and P7 (0,j, jb),

P2 = (73P3 +u Y6P6 +- Y7P7)/(73 + 76 +•-7), 'Y2 = 73 + 76 + ,Y7,

Group 3 contains Pi (0, j, k), PA (0, k, ka), and p9 (0, k, kb),

P3 = (Y1 P1•+ 78P8 + 79P9) /(71 + 8' + 79), 3 = 71 + 78 + 79"
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The resulting linear polynomial

3

R(x, y) = Z 5(x, y) (6.10)
8=1

is identical to R(x, y) in (6.4) and in most cases the coefficients 's can be
made non-negative by suitably choosing the value of the degree of freedom
3,i, through the solution of a group of 3 linear inequalities for 3Y1.

We remark that for practical implementation, it is the 5 constants aj,
which depend on the local geometry only, such that

S(XG , y ) "= alf 0 + a 2ui + a3Uk + a4uia + a5uib, (6.11)

that have to be precomputed and stored once the mesh is generated. We do
not need to store any information about the polynomial f5i itself.

For the second quadrature point on side i, (G2 in Fig. 5.1), Group 1
contains P3 (0,i,j), p4 (O,i,ia), and P5 (O,i, ib), with the combination co-
efficient ýj = y3 + y'4 + 'y5; Group 2 contains P2 (O,k,i), P8 (O,k, ka), and
P9 (0, k, kb); with the combination coefficient 2=2 '+y + +'s ±yg; Group 3 con-
tains P, (0,j, k), P6 (O,j, ja), and P7 (O,j, jb); with combination coefficient
"Y3 = -'y + -y6 + -y7. We can do the same thing for the other two sides (j, k).

Next we describe the fourth order reconstruction. Again, the key step
to build a high order WENO scheme based on lower order polynomials is
carried out in the following. We would like to construct several quadratic
polynomials whose weighted average will give the same result as the cubic
reconstruction p3, which was described in Sect. 6.2, at each quadrature point
(the weights are different for different quadrature points). The following 6
quadratic polynomials are constructed by having the same cell averages as u
on the corresponding triangles:
ql (on triangles: 0, i, ia, ib, k, kb), q2 (on triangles: 0, i, ia, ib, j, ja),
q3 (on triangles: O, j, ja, jb, i, ib), q4 (on triangles: O, j, ja, jb, k, ka),
q5 (on triangles: 0, k, ka, kb, j, jb), q6 (on triangles: 0, k, ka, kb, i, ia).

For each quadrature point (xG, yG), we would like to find the linear
weights such that the linear combination of these q,

6

Q(x,y) = yý 3q.(x,y) (6.12)
s=1

satisfies
Q(xG, yG) = p 3 (xG, yG) (6.13)

for all Ws.
As before, (6.13) results in 10 linear equations for the 6 unknowns %,

which are the coefficients of the 10 cell averages W2's in (6.6). This looks like
a grossly over-determined system, but it is in fact under-determined with
rank 5, thus allowing a solution for -y with one degree of freedom. A crucial
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observation is again that (6.13) is valid for all the 6 cases u = 1, x, y, x , xy, y

under just one constraint on the -ye, namely E = 1, because q,(x)
and p 3 (x) all reproduce quadratic functions exactly. We can thus eliminate 5
equations from the 10, resulting in a rank 5 system with one degree of freedom
in the solution for y,,. In practice, we obtain the solution Y, for s > 2 with
,yi as the degree of freedom.

Again, the first effort we would like to make is to use this degree of freedom
to obtain a set of non-negative -ys, through the solution of a group of 5 linear
inequalities for yl. This is important for the WENO procedure. Positivity
seems achievable for the mostly near-uniform meshes used in the numerical
examples. For general triangulations negative coefficients do appear, and the
investigation of using the Lax-Friedrichs like procedure mentioned above for
the third order case is currently undertaken.

We finally come to the point of smooth indicators and nonlinear weights.
For this we follow exactly as in Jiang and Shu [55], see Sect. 3.2. For a
polynomial p(x, y) with degree up to n, we define the following measurement
for smoothness

S I IAII
1 1-(Dnp(xy)) 2 dxdy (6.14)

l_<Ial<n f'

where a is a multi-index and D is the derivative operator, for example, when

a = (1, 2) then I a 3 and D'p(x, y) = 0"(x"). The non-linear weights are
then defined as:

- i (e+)Yi (6.15)

where -yi is the i-th coefficient in the linear combination of polynomials (i.e.
the f, in (6.10) for the third order case and the 7, in (6.12) for the fourth
order case), Si is the measurement of smoothness of the i-th polynomial
pi(x,y) (i.e. the P5, in (6.10) for the third order case and the q8 in (6.12)
for the fourth order case), and e is a small positive number which we take
as E -= 10- for all the numerical experiments for triangles. The numerical
results are not very sensitive to the choice of f in a range from 10-2 to
10-6. In general, larger E gives better accuracy for smooth problems but may
generate small oscillations for shocks. Smaller E is more friendly to shocks.
The nonlinear weights wj in (6.15) would then replace the linear weights 7j
to form a WENO reconstruction.

We emphasize that the smoothness measurements (6.14) are quadratic
functions of the cell averages in the stencil. For example, it is the 10 constants
bi and ci, which depend on the local geometry only, such that

S = (biio + b2ii + b3ik + b4 iiia + b5ib) 2 + (clPO - C2i -I C3?k +-C 4eia + C5Uib) 2

(6.16)
for the smoothness measurements (6.14) of fi in (6.10), that have to be
precomputed and stored once the mesh is generated. We do not need to store
any information about the polynomial P5 itself.
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7 ENO and WENO Schemes in Multi Dimensions

In this section we describe the ENO and WENO schemes for 2D conservation
laws:

ut(x,y,t) + f.(u(X,y,t)) + g (u(x,y,t)) = 0 (7.1)

again equipped with suitable initial and boundary conditions.
Although we present everything in 2D, most of the discussion is also valid

for higher dimensions.
We again concentrate on the discussion of spatial discretizations, and will

leave the time variable t continuous (the method-of-lines approach). Time
discretization will be discussed in Sect. 9.

For structured meshes, our computational domain is rectangular, given
by (5.1). In such cases our grids will be Cartesian, given by (5.2) and (5.3).
For unstructured meshes, we assume a triangulation consisting of triangles
(5.18).

We do not discuss boundary conditions in this section. We thus assume
that the values of the numerical solution are also available outside the com-
putational domain whenever they are needed. This would be the case for peri-
odic or compactly supported problems. Two dimensional boundary condition
treatments are similar to the one dimensional case discussed in Sect. 4.5.

7.1 Finite Volume Formulation in the Scalar Case

For finite volume schemes, or schemes based on cell averages, we do not solve
(7.1) directly, but its integrated version. For a structured mesh, we integrate
(7.1) over the cell Iij to obtain

d-•=t) 1 ( j+j f (u(xi+½,Y,t)) dy_ Yj+f
dt AxjAyj \fyj_ 2yj_ j-2

+ g(u(x,yj+ ,t))dx - g (u(x, Yjt))dx (7.2)

where
_ 1 fuj+½ f+½u (6, ,t) d6 d77 (7.3)

uij(t) AxiyjYj f -½

is the cell average. We approximate (7.2) by the following conservative scheme

du-ij(t) (fi+,j - A-½j- ]1 gij+½ - ý ,j , (7.4)

where the numerical flux fi+ ½,j is defined by

Zw2h = (U- yA , Uf'Yj+ ) , (7.5)
( oýYj0Aj'i y
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where # and wa are Gaussian quadrature nodes and weights, for approxi-
mating the integration in y:

_1 fY+½f(u(xji+, y, t)) dy
A yj 1 , j_ ½

inside the integral form of the PDE (7.2), and u± 1  are the k-th order

accurate reconstructed values obtained by ENO or WENO reconstruction
described in the previous section. As before, the superscripts ± imply the
values are obtained within the cell Iij (for the superscript -) and the cell
Ii+j,j (for the superscript +), respectively. The flux gi,j+ is defined similarly
by

,wah (u-X,+ Ar ,+ u,+ 0  ,J+½), + (7.6)
a

for approximating the integration in x:

1x-- '+ 12 g (u (x, y,+½ , t)) dx

inside the integral form of the PDE (7.2). a±u j+½ are again the k-th order

accurate reconstructed values obtained by ENO or WENO reconstruction
described in the previous section. h is again a one dimensional monotone
flux, examples being given in (4.6)-(4.8).

We summarize the procedure to build a finite volume ENO or WENO
2D scheme (7.4) on structured mesh, given the cell averages {Iuij} (we again
drop the explicit reference to the time variable t), and a one dimensional
monotone flux h, as follows:

Algorithm 7.1. Finite volume 2D scalar ENO and WENO schemes
for a rectangular mesh.

1. Follow the procedures described in Sect. 6.1, to obtain ENO or WENO re-
constructed values at the Gaussian points,

U ± I and u±ui+½,Yj+0° Ayj andui+0.o~i'j+½.'

Notice that this step involves two one dimensional reconstructions, each
one to remove a one dimensional cell average in one of the two directions.
Also notice that the optimal weights used in the WENO reconstruction
procedure are different for different Gaussian points indexed by a;

2. Compute the flux fi+½,j and gi,j+½ using (7.5) and (7.6);

3. Form the scheme (7.4).

We remark that the finite volume scheme in 2D, as described above, is
very expensive due to the following reasons:
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- A two dimensional reconstruction, at the cost of two one dimensional
reconstructions per grid point, is needed. For general n space dimensions,
the cost becomes n one dimensional reconstructions per grid point;

- More than one quadrature points are needed in formulating the flux (7.5)-
(7.6), for order of accuracy higher than two. Thus, for ENO, although the
stencil choosing process needs to be done only once, the reconstruction
(2.10) has to be done for each quadrature point used in the flux for-
mulation. For WENO, the optimal weights are also different for each
quadrature point. This becomes much more costly for n > 2 dimension,
as then the fluxes are defined by integrals in n - 1 dimension and a n - 1
dimensional quadrature rule must be used.

This is why multidimensional finite volume schemes of order of accu-
racy higher than 2 are rarely used for structured mesh. For 2D, based on
[43], Casper [14] has coded up a fourth order finite volume ENO scheme for
Cartesian grids, see also [15]. 3D finite volume ENO code of order of accu-
racy higher than 2 for a rectangular mesh does not exist yet, to the author's
knowledge. A finite difference version to be described in Sect. 7.2 is much
more economical for a multidimensional structured mesh.

At the second order level, the cost is greatly reduced because:

- There is no need to perform a reconstruction, as the cell average Uij agrees
with the point value at the center u(xi, yj) to second order O(A 2 );

- The quadrature rule in defining the flux (7.5)-(7.6) needs only one (mid)
point.

One advantage of finite volume ENO or WENO schemes is that they can
be defined on arbitrary meshes, provided that an ENO or WENO reconstruc-
tion on that mesh is available. This is described below. See also [1].

Taking the triangle AL as our control volume, we formulate the semi-
discrete finite volume scheme for equation (7.1) as:

d Udt) + 1 f F. nds =0 (7.7)

where Uii(t) is the cell average of u on the cell Aj, F = (f,g)T, n is the
outward unit normal of the triangle boundary OAi.

The line integral in (7.7) is discretized by a q-point Gaussian integration
formula, q

F. nds P IFkI EwjF(u(Gj,t)) .n (7.8)
fr" j=l

and F(u(Gj, t)) -n is replaced by a one dimensional numerical flux in the n
direction. We can for example use any one of (4.6)-(4.8). The simple Lax-
Friedrichs flux is for example given by

F(u(Gj, t)) -n (7.9)
1 [(F(u- (Gj, t)) + F(u+ (Gj, t))).-n - a (u+(Gj, t) - u- (Gj, t))]
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where a is taken as an upper bound for IF'(u) • nj. Here, u- and u+ are the
values of the reconstructed values of u inside the triangle and outside the
triangle (inside the neighboring triangle) at the Gaussian point, see Sect. 6.2.

Since we are constructing schemes up to fourth order accuracy, two point
Gaussian q = 2 is used, which has G1 = cP1 + (1 - c)P 2 , G 2 = cP 2 + (1 -

c)Pi, c = 1 + '63 and w, = W2 = ½ for the line with end points P1 and P2 .
We now give some test results about accuracy for the third and fourth

order WENO schemes constructed on triangulations above.
The first example is the two-dimensional linear equation:

u +ux+uy = 0 (7.10)

with the initial condition uo(x,y) = sin(z(x+y)), -2 < x < 2, -2 < y < 2,
and periodic boundary conditions.

We first use uniform triangular meshes which are obtained by adding one
diagonal line in each rectangle, shown in Fig. 7.1 for the coarsest case h = 2.
The accuracy results are shown for both the third order scheme (from the
combination of linear polynomials) and the fourth order scheme (from the
combination of quadratic polynomials), for both the linear constant weights
in Table 7.1 and the WENO weights in Table 7.2. Here h is the length of the
rectangles. The results shown are at t = 2.0. The errors presented are those
of the cell averages of u.

////F/ / /s/A// /////

2-1 0 12

Fig. 7. 1. Uniform mesh with h -- •for the accuracy test.
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Table 7.1. Accuracy for the 2D linear equation, uniform meshes, linear schemes.

p1 (3rd order) P' (4th order)
h L' error order L' error order L' error order L' error order

2/5 1.80E-01 - 2.79E-01 - 1.40E-02 - 2.17E-02 -
1/5 2.81E-02 2.68 4.37E-02 2.68 9.11E-04 3.94 1.41E-03 3.94

1/10 3.65E-03 2.95 5.72E-03 2.93 5.57E-05 4.03 8.72E-05 4.02
1/2014.60E-04 2.99 7.22E-04 2.99 3.43E-06 4.02 5.39E-06 4.02
1/40 5.76E-05 3.001 9.05E-05 3.00 2.12E-07 4.02 3.34E-07 4.01
1/8077.21E-06 3.00 1.13E-05 3.0011.32E-08 4.01 2.07E-08 4.01

Table 7.2. Accuracy for the 2D linear equation, uniform meshes, WENO schemes.

P1 (3rd order) P' (4th order)
h L' error order L' error order L' error order L' error order

2/5 2.66E-01 - 4.30E-01 - 1.38E-02 - 2.94E-02 -
1/5 8.11E-02 1.71 1.93E-01 1.16 1.80E-03 2.94 2.74E-03 3.42

1/10 2.65E-02 1.62 6.16E-02 1.65 8.87E-05 4.34 1.46E-04 4.23
1/20 2.68E-03 3.31 8.77E-03 2.81 4.34E-06 4.35 7.11E-06 4.36
1/40 1.44E-04 4.22 4.88E-04 4.1712.30E-07 4.24 3.71E-07 4.26
1/8018.05E-06 4.16 2.40E-05 4.3511.34E-08 4.10 2.12E-08 4.13

We then use non-uniform meshes, shown in Fig. 7.2 for the coarsest case
h___Z, where h is just an average mesh size. The refinement of the meshes is
done in a uniform way, namely by cutting each triangle into 4 smaller similar
ones. The accuracy result is shown in Table 7.3 for the linear constant weights
case and in Table 7.4 for the WENO case.

The second example is the two-dimensional Burgers' equation:

Ut+ (-)+ ( ) = 0 (7.11)

with the initial condition uo(x,y) = 0.3 + 0.7 sin('(x + y)), -2 < x <
2, -2 < y < 2, and periodic boundary conditions.

We first use the same uniform triangular meshes as in the previous exam-
ple, shown in Fig. 7.1 for the coarsest case h = 2. In Table 7.5, the accuracy
results for the linear schemes are shown for both the third order scheme and
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2

1

Fig. 7.2. Non-uniform mesh with h =2 for accuracy test.

Table 7.3. Accuracy for the 2D linear equation, non-uniform meshes, linear
schemes.

P' (3rd order) P' (4th order)
h L' error order L' error order L' error order L' error order

ho/2 1.21E-01 - 2.25E-01 - 4.95E-03 - 1.73E-02 -
ho/4 1.81E-02 2.74 3.74E-02 2.59 2.90E-04 4.09 1.42E-03 3.61
ho/8 2.36E-03 2.94 5.39E-03 2.80 2.21E-05 3.71 8.32E-05 4.09

ho/16 3.00E-04 2.98 7.19E-04 2.91 1.29E-06 4.10 5.09E-06 4.03
ho/32 3.78E-05 2.99 9.40E-05 2.94 7.76E-08 4.06 3.16E-07 4.01
ho/64 4.75E-06 2.99 1.22E-05 2.95 4.75E-09 4.03 1.95E-08 4.02

Table 7.4. Accuracy for the 2D linear equation, non-uniform meshes, WENO
schemes.

P' (3rd order) P' (4th order)
h L' error order L' error order L' error order L' error order

ho/2 2.79E-01 - 5.28E-01 - 1.77E-02 - 6.41E-02 -
ho/4 8.43E-02 1.73 2.32E-01 1.19 8.85E-04 4.32 3.07E-03 4.38
ho/8 2.53E-02 1.74 7.47E-02 1.64 4.08E-05 4.44 1.43E-04 4.42

ho/16 2.24E-03 3.50 1.14E-02 2.71 1.82E-06 4.49 6.37E-06 4.49
ho/32 1.18E-04 4.25 6.83E-04 4.06 8.95E-08 4.35 3.36E-07 4.25
ho/64 6.21E-06 4.25 3.15E-05 4.4414.92E-09 4.19 2.00E-08 4.07
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the fourth order scheme, at t = 0.5/7r2 when the solution is still smooth. The
errors presented are those of the point values at the 6 quadrature points of
each triangle. In Table 7.6, the same accuracy results for the WENO schemes
are shown.

Table 7.5. Accuracy for 2D Burgers' equation, uniform meshes, linear schemes.

P' (3rd order) P' (4th order)
h L' error order L' error order L' error order L' error order

2/5 2.67E-02 - 7.75E-02 - 8.63E-03 - 2.18E-02 -
1/5 3.65E-03 2.87 1.16E-02 2.74 6.08E-04 3.83 1.70E-03 3.68

1/10 4.60E-04 2.99 1.52E-03 2.93 3.97E-05 3.94 1.16E-04 3.87
1/2015.75E-05 3.00 1.91E-04 2.99 2.51E-06 3.98 7.37E-06 3.98
1/4017.18E-06 3.01 2.38E-05 3.01 1.57E-07 4.00 4.62E-07 4.00
1/8018.96E-07 3.00 2.97E-06 3.00 9.83E-09 4.00 2.89E-08 4.00

Table 7.6. Accuracy for 2D Burgers' equation, uniform meshes, WENO schemes.

P' (3rd order) P' (4th order)
h L' error order L' error order L' error order L' error order

2/5 2.76E-02 - 8.18E-02 - 8.64E-03 - 2.106-02 -
1/5 4.63E-03 2.58 1.20E-02 2.77 6.05E-04 3.84 1.73E-03 3.60

1/10 6.97E-04 2.73 2.16E-03 2.47 3.94E-05 3.94 1.18E-04 3.87
1/20 17.12E-05 3.29 1.90E-04 3.51 2.50E-06 3.98 7.42E-06 3.99
1/40 7.63E-06 3.22 2.36E-05 3.01 1.57E-07 3.99 4.63E-07 4.00
1/80 9.08E-07 3.07 2.96E-06 3.00 9.83E-09 4.00 2.89E-08 4.00

We then use the same non-uniform meshes as in the previous example,
shown in Fig. 7.2 for the coarsest case. The accuracy result is shown in Table
7.7 for the linear constant weights case and in Table 7.8 for the WENO case.

To demonstrate the application for shock computation, we continue the
the WENO calculation to t = 5/7r2 when discontinuities develop. Fig. 7.3 is
the result for h = 1/20 of a uniform mesh. Fig. 7.4 is the result for h = ho/16
of a non-uniform mesh. We can see that the shock transitions are sharp and
non-oscillatory.
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Table 7.7. Accuracy for 2D Burgers' equation, non-uniform meshes, linear schemes.

P' (3rd order) P' (4th order)
herror order L' error order L' rrr order L' error order

ho/2 1.69E-02 - 7.95E-01 - 3.96E-03 -1.8ý8E02

ho/4 2.23E-03 2.92 1.23E-02 2.69 2.87E-04 3.79 2.17E-03 3.12
ho/8 2.84E-04 2.97 1.69E-03 2.86 1.90E-05 3.92 1.81E-04 3.58

ho/16 3.57E-05 2.99 2.22E-04 2.93 1.20E-06 3.99 1.34E-05 3.771
ho/32 4.48E-061 2.991 3.00E-05 2.89 7.57E-081 3.99 1.00E-06 3.74
ho/64 5.63E-071 2.991 4.26E-061 2.8214.75E-09 4.001 7.57E-08 3.72

Table 7.8. Accuracy for 2D Burgers' equation, non-uniform meshes, WENO
schemes.

P1 (3rd order) P2 (4th order)
h L' error order L' error order IL' rrr order L' error order

ho/2 2.01E-02 - 9.16E-02 - 4.18E-03 -2.376-02
ho/4 3.85E-03 2.38 1.80E-02 2.35 2.90E-04 3.85 2.61E-03 3.18
ho/8 5.79E-04 2.73 3.39E-03 2.41 1.85E-05 3.97 1.92E-04 3.77

ho/6 5.34-05 3.44 3.55E-04 3.26 1.18E-06 3.97 1.35E-05 3.831
ho/32 5.12E-061 3.381 2.95E-05 3.5917.45E-08 3.99 9.99E-07 3.76
ho/64 5.82E-071 3.141 4.23E-061 2.80 4.,67E-09 4.00 7.56E-08 3.72

3Md order, undm-e mesh 4thr order, unffee meshr

Fig. 7.3. 2D Burgers' equation: t =5/7t
2 uniform mesh. Left: third order WENO;

Right: fourth order WENO.
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3rd order, non-un~flo mesh 4th order, non-uniform mesh

Fig. 7.4. 2D Burgers' equation: t = 5/7r2 , non-uniform mesh. Left: third order
WENO; Right: fourth order WENO.

7.2 Finite Difference Formulation in the Scalar Case

Here we assume a uniform grid and solve (7.1) directly using a conservative
approximation to the spatial derivative:

duij(t) = 1 ( -i+½,j 4_ 1 ]§-½, - - (7.12)

where uij (t) is the numerical approximation to the point value u(xi, yj, t).

The numerical flux fi+½5 is obtained by the one dimensional ENO or
WENO approximation procedure, Algorithm 3.1 or 3.2, with v(x) = f (u(x, yj, t))
and with j fixed. Likewise, the numerical flux §j,j+½ is obtained by the
one dimensional ENO or WENO approximation procedure, with v(y) =

f(u(xi, y, t)) and with i fixed.
All the one dimensional discussions in Sect. 4.2, such as upwinding, ENO-

Roe, flux splitting, etc., can be applied here dimension by dimension.
The discussion here is also valid for higher spatial dimension n. In effect,

it is the same one dimensional conservative derivative approximation applied
to each space dimension.

It is a straight forward exercise [16] to show that, in terms of operation
count, the finite difference ENO or WENO schemes are about a factor of 4
less than the finite volume counterpart of the same order. In 3D this factor
becomes about 9.

We thus strongly recommend the usage of the finite difference version of
ENO and WENO schemes (also called ENO and WENO schemes based on
point values), whenever possible.
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7.3 Provable Properties in the Scalar Case

Second order ENO schemes are also maximum norm non-increasing for multi-
dimensions. Of course, this stability is too weak to imply any convergence. As
was mentioned before, there is no known convergence result for ENO schemes
of order higher than 2, even for smooth solutions.

WENO schemes have better convergence results also in the current multi-
D case, mainly because their numerical fluxes are smoother. It is proven [55]
that WENO schemes converge for smooth solutions.

We again emphasize that, even though there are very few theoretical re-
sults about ENO or WENO schemes, in practice they are very robust and
stable. We once again caution against any attempts to modify the schemes
solely for the purpose of stability or convergence proofs. In fact the modifica-
tion of ENO schemes in [89], presented in Sect. 4.3, which keeps the formal
uniform high order accuracy, actually produces schemes which are convergent
to entropy solutions for general multi dimensional scalar equations. However
it was pointed out there that the modification is not computationally useful,
hence the convergence result has little practical value.

7.4 Systems

The advice here is that, when the fluxes are computed along a cell boundary,
a one dimensional local characteristic decomposition normal to the boundary
is performed. Also, the monotone flux is replaced with a one dimensional
exact or approximate Riemann solver. Thus, the discussion in Sect. 4.4 can
be applied here. For second and some third order schemes, a componentwise
ENO or WENO scheme usually gives satisfactory results for most test prob-
lems, with a significantly lower computational cost than the characteristic
decompositions.

There are discussions in the literature about truly multi-dimensional recipes.
However, these tend to become extremely complicated for order of accuracy
higher than two, so they have not been used extensively in practice for higher
order schemes. Another reason to suggest against using such complicated
truly multidimensional recipes for order of accuracy higher than two is that,
while dimension by dimension schemes as advocated in these lecture notes
are not rotationally invariant, the direction related non-symmetry actually
diminishes with increased order [16].

8 Further Topics in ENO and WENO Schemes

In this section we discuss some miscellaneous (but not necessarily unimpor-
tant!) topics in ENO and WENO schemes.
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8.1 Subcell Resolution

This idea was first raised by Harten [44]. The observation is that, since in
interpolating the primitive V, two points must be included in the initial
stencil (see Algorithm 3.1), one cannot avoid having at least one cell for each
discontinuity, inside which the reconstructed polynomial is not accurate (O(1)
error there). We can clearly see this 0(1) error in the ENO interpolation in
Fig. 3.1. The reconstruction in this shocked cell, although inaccurate, will
always be monotone (Property 2 in Sect. 3.1), so stability will not be a
problem. However, it does cause a smearing of the discontinuity (over one
cell, initially).

If we are solving a truly nonlinear shock, then characteristics flow into the
shock, thus any error one makes during time evolution tends to be absorbed
into the shock (we also say that the shock has a self sharpening mechanism).
However, we are less lucky with a linear discontinuity, such as a discontinuity
carried by the linear equation ut + u, = 0. Such linear discontinuities are also
called contact discontinuities in gas dynamics. The characteristics for such
cases are parallel to the discontinuity, hence any numerical smearing tends to
accumulate and the discontinuity becomes progressively more smeared with
time. Harten argues that the smearing of the discontinuity is at the rate

of O(Ax1 -T-) where k is the order of the scheme. Although higher order
schemes have less smearing, when time is large the smearing is still very
significant.

Harten [44] makes the following simple observation: in the shocked cell
Ii, instead of using the reconstruction polynomial pi(x), which is highly in-
accurate (the only useful information it carries is the cell average in the cell),
one could try to find the location of the discontinuity inside the cell Ii, say
at x,, and then use the neighboring reconstructions pi-1 (x) extended to x,
from left and Pi+1 (x) extended to x, from right. To find the shock location,
one could argue that pi-1 (x) is a very accurate approximation to v(x) up to
the discontinuity x, from left, and Pi+1 (x) is a very accurate approximation
to v(x) up to the discontinuity x, from right. We thus extend Pi-1 (x) from
the left into the cell 1j, and extend pi+1 (x) from the right into the cell 1j,
and require that the cell average •U be preserved:

S Pi-1 (x) dx+ i+ Pi+ (x) dx = Axj~i. (8.1)

It can be proven that under very general conditions, (8.1) has only one root
x8 inside the cell Ii, hence one could use Newton iterations to find this root.

Subcell resolution can be applied to both finite volume and finite difference
ENO and WENO schemes [44], [90], However, it should be applied only to
sharpen contact discontinuities. It is quite dangerous to apply the subcell
resolution to a shock, since it might generate entropy violating expansion
shocks in the numerical solution.
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Another very serious restriction about subcell resolution is that it is very
difficult to be applied to 2D. However, see Siddiqi, Kimia and Shu [93], where
a geometrical ENO is used to extend the subcell resolution idea to 2D for
image processing problems (we termed it geometric ENO, or GENO).

8.2 Artificial Compression

Another very useful idea to sharpen a contact discontinuity is the artificial
compression, first developed by Harten [41] and further improved by Yang
[105]. The idea is to increase the magnitude of the slope of a reconstruction, of
course subject to certain monotonicity restrictions, near such a discontinuity.
Notice that this goes against the idea of limiting, which typically decreases
the magnitude of the slope of a reconstruction.

Artificial compression can be applied both to finite volume and to finite
difference ENO and WENO schemes [105], [90], [55]. Unlike subcell resolution,
artificial compression can also be applied easily to multi space dimensions,
at least in principle.

8.3 Other Building Blocks

It is not necessary to stay within polynomial building blocks, although poly-
nomials are the most natural functions to work with. For some applications,
other building blocks, such as rational functions, trigonometric polynomials,
exponential functions, radial functions, etc., may be more appropriate. The
idea of ENO or WENO can be applied also in such situations. The key idea
is to find suitable "smooth indicators", similar to the Newton divided differ-
ences for the polynomial case, for applying the ENO or WENO idea. See [17]
and [52] for some examples.

9 Time Discretization

Up to now we have only considered spatial discretizations, leaving the time
variable continuous (method of lines). In this section we consider the issue
of time discretization. The techniques discussed in this section can also be
applied to other types of spatial discretizations using the method of lines ap-
proach, such as various TVD and TVB schemes [66,100,85] and discontinuous
Galerkin methods [18-21].

9.1 TVD Runge-Kutta Methods

A class of TVD (total variation diminishing) high order Runge-Kutta meth-
ods is developed in [89] and further in [36].

These Runge-Kutta methods are used to solve a system of initial value
problems of ODEs written as:

ut = L(u), (9.1)
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resulting from a method of lines spatial approximation to a PDE such as:

ut = -f(u)M. (9.2)

We have written the equation in (9.2) as a 1D conservation law, but the
discussion which follows apply to general initial value problems of PDEs in
any spatial dimensions. Clearly, L(u) in (9.1) is an approximation (e.g. ENO
or WENO approximation in these lecture notes), to the derivative -f(u), in
the PDE (9.2).

If we assume that a first order Euler forward time stepping:

un+1 = u' + AtL(u') (9.3)

is stable in a certain norm:

Ilun+1j l 5 _< Iunll (9.4)

under a suitable restriction on At:

At < At1 , (9.5)

then we look for higher order in time Runge-Kutta methods such that the
same stability result (9.4) holds, under a perhaps different restriction on At:

At < c At 1 . (9.6)

where c is termed the CFL coefficient for the high order time discretization.
We remark that the stability condition (9.4) for the first order Euler

forward in time (9.3) is easy to obtain in many cases, such as various TVD
and TVB schemes in 1D (where the norm is the total variation norm) and in
multi dimensions (where the norm is the L' norm), see, e.g. [66,100,85].

Originally in [89,86] the norm in (9.4) was chosen to be the total variation
norm, hence the terminology "TVD time discretization'.

As it stands, the TVD high order time discretization defined above main-
tains stability in whatever norm, of the Euler forward first order time step-
ping, for the high order time discretization, under the time step restriction
(9.6). For example, if it is used for multi dimensional scalar conservation laws,
for which TVD is not possible but maximum norm stability can be maintained
for high order spatial discretizations plus forward Euler time stepping (e.g.
[20]), then the same maximum norm stability can be maintained if TVD high
order time discretization is used. As another example, if an entropy inequal-
ity can be proved for the Euler forward, then the same entropy inequality is
valid under a high order TVD time discretization.

In [89], a general Runge-Kutta method for (9.1) is written in the form:

i-I

u(i) = E (aiku() + At3ikL(u(k)))' i= 1,...,m (9.7)
k=O

U(-) = un, U(m) un+1.
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Clearly, if all the coefficients are nonnegative aik > 0, fPik 3! 0, then (9.7) is
just a convex combination of the Euler forward operators, with At replaced
by P-kAt, since by consistency Eý-o aik = 1. We thus have

Lemma 9.1. [89] The Runge-Kutta method (9.7) is TVD under the CFL
coefficient (9.6):

c = min aik (9.8)i,k Oik

provided that aik Ž0 0, /3 ik >0. 0

In [89], schemes up to third order were found to satisfy the conditions in
Lemma 9.1 with CFL coefficient equal to 1.

The optimal second order TVD Runge-Kutta method is given by [89,36]:

0) = u' + AtL(u') (9.9)

un+1 = lun + luM + 1 AtL(u(1)),
2 2 2

with a CFL coefficient c = 1 in (9.8).
The optimal third order TVD Runge-Kutta method is given by [89,36]:

u(1) = un + AtL(un)

U(2) = U3n + 1U(1) + 1 AtL(u(')) (9.10)
4 4 4

_ +1 = lu + 2U(2) + 2 AtL(U(2)),3 3 3

with a CFL coefficient c = 1 in (9.8).
It can be shown that for any order of accuracy, c = 1 is the best one can

get for a CFL coefficient. We have also found, for a linear spatial operator L,
optimal TVD Runge-Kutta methods for arbitrary order of accuracy with a
CFL coefficient c = 1. These results will appear in a forthcoming paper [37].

Unfortunately, if L is nonlinear, it is proven in [36] that no four stage,
fourth order TVD Runge-Kutta method exists with nonnegative aik and Oikk.
We thus have to consider the situation where aik >_ 0 but /3 ik might be
negative. In such situations we need to introduce an adjoint operator L. The
requirement for L is that it approximates the same spatial derivative(s) as
L, but is TVD (or stable in another relevant norm) for first order Euler,
backward in time:

un+i = un- AtL(un) (9.11)

This can be achieved, for hyperbolic conservation laws, by solving the back-
ward in time version of (9.2):

ut = f(u)x. (9.12)
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Numerically, the only difference is the change of upwind direction. Clearly, L
can be computed with the same cost as that of computing L. We then have
the following lemma:

Lemma 9.2. [89] The Runge-Kutta method (9.7) is TVD under the CFL
coefficient (9.6):

c = min aik (9.13)

provided that aik > 0, and L is replaced by L for negative fOik. 0

Notice that, if for the same k, both L(u(k)) and L(u(k)) must be computed,
the cost as well as storage requirement for this k is doubled. For this reason,
we would like to avoid negative Oilk as much as possible.

An extensive search performed in [36] gives the following preferred four
stage, fourth order TVD Runge-Kutta method:

U(1) = un + 1 AtL(u')

u(2) = 649 (0) - 10890423AtL un. 951 ()+ 5000 A: 1-xu • 95 + 1-- ) + 7- AtL(u('))

1600 259601600 7873
U(3) 53989 n- 102261 . ~ ,- 4806213 u(1)

2 5 0 0 0 0 0  5 0 00000 t() + 20000000

5121 A (u()) 2 3 6 1 9 U(2) + 7 AtL(u( 2)) (9.14)

+00 32000 10000

Un1= lunl+ 1±t (n 6127 UM1 + 1 AtL(u('))
5 -T 30000 6
7873 ± (AtL(u(3))

30000 3 6

with a CFL coefficient c = 0.936 in (9.13). Notice that two L's must be com-
puted. The effective CFL coefficient, comparing with an ideal case without
L's, is 0.936 x 6 = 0.624. Since it is difficult to solve the global optimization
problem, we do not claim that (9.14) is the optimal 4 stage, 4th order TVD
Runge-Kutta method.

A fifth order TVD Runge-Kutta method is also given in [89].
For large scale scientific computing in three space dimensions, storage is

usually a paramount consideration. There are therefore discussions about low
storage Runge-Kutta methods [1031, [13], which only require 2 storage units
per ODE equation. In [36], we considered the TVD properties among such
low storage Runge-Kutta methods and found third order low storage TVD
Runge-Kutta methods.

The general low-storage Runge-Kutta schemes can be written in the form
[103], [13]:

du(=) = Aidu(i-l) + AtL(u(i-l)) (9.15)

u(-) = 0-1) +Bidu('), i = 1,...,m
u(°)= u, u(m) = U+1, Ao=O
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Only u and du must be stored, resulting in two storage units for each variable.
Carpenter and Kennedy [13] have classified all the three stage, third or-

der (m=3) low storage Runge-Kutta methods, obtaining the following one
parameter family:

zi = /36c' + 36c - 135c + 84C2 - 12

Z2 = 2c2 + c2 - 2

Z3 = 12c24 - 18c3 + 18c2 - 11c 2 + 2

z4 = 36c4 - 36c3 + 13c2 - 8c 2 + 4

z5 = 69c3 - 62c2 + 28c2 - 8

z6 = 34c 4 - 46c3 + 34c2 - 13c 2 + 2

B1 = c2  (9.16)

B2 = 12c 2 (c 2 - 1)(3z2 - zi) - (3Z2 - Z1 ) 2

144c2 (3c 2 - 2)(c 2 - 1)2

B3 = -24(3c 2 - 2)(c 2 - 1)2

(3z 2 - zi) 2 - 12c2(c2 - 1)(3z 2 - zi)

-z1(6C22 - 4c2 + 1) + 3z 3
A2 = (2c 2 + 1)zi - 3(c2 + 2)(2c 2 - 1)2

-Z4Z1 + 108(2c 2 - 1)c2 - 3(2c2 - 1)z5

A3 = 24zLC2 (C2 - 1)4 + 72c 2z 6 + 72c6(2c 2 - 13)

In [36] we converted this form into the form (9.7), by introducing three
new parameters. Then we searched for values of these parameters that would
maximize the CFL restriction, by a computer program. The result seems to
indicate that

c2 = 0.924574 (9.17)

gives an almost best choice, with CFL coefficient c = 0.32 in (9.8). This is of
course less optimal than (9.10) in terms of CFL coefficients, however the low
storage form is useful for large scale calculations.

We end this subsection by quoting the following numerical example [36],
which shows that, even with a very nice second order TVD spatial discretiza-
tion, if the time discretization is by a non-TVD but linearly stable Runge-
Kutta method, the result may be oscillatory. Thus it would always be safer
to use TVD Runge-Kutta methods for hyperbolic problems.

The numerical example uses the standard minmod based MUSCL second
order spatial discretization [101]. We will compare the results of a TVD versus
a non-TVD second order Runge-Kutta time discretizations. The PDE is the
simple Burgers equation

Ut + 1 U2 0 (9.18)
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with a Riemann initial data:

UX 0) 1, if x _< 0 (.9u(x, O) ={0.,(9.19)
-0.5, if x > 0.

The nonlinear flux (Iu2). in (9.18) is approximated by the conservative
difference 1

fl x A (fi+ 1
where the numerical flux fi+ is defined by

f,+ = h

with
1.

u = ui+ 1 minmod(ui+l - ui,ui - ui- )I
2

u++! = uj+1 - -minmod(ui+ 2 - Ui+l, ui+1 - ui)

The monotone flux h is the Godunov flux defined by (4.6), and the minmod
function is given by

minmod(a, b) = sign(a) + sign(b) min(IaI, Ibi).
2

It is easy to prove, by using Harten's Lemma [42], that the Euler forward
time discretization with this second order MUSCL spatial operator is TVD
under the CFL condition (9.5):

"At < mAX (9.20)2 2maxj Iu'
Thus At = 2 maxjAul7 will be used in all our calculations. Actually, apart

from a slight difference (the minmod function is replaced by a minimum-in-
absolute-value function), this MUSCL scheme is the same as the second order
ENO scheme discussed in Sect. 4.1.

The TVD second order Runge-Kutta method we consider is the optimal
one (9.9). The non-TVD method we use is:

u(1) = un - 20AtL(un) (9.21)

un+1 = U +41 6tL(Un) 1 AtL(u(1)).

It is easy to verify that both methods are second order accurate in time.
The second one (9..21) is however clearly non-TVD, since it has negative
/P's in both stages (i.e. it partially simulates backward in time with wrong
upwinding).
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If the operator L is linear (for example the first order upwind scheme
applied to a linear PDE), then both Runge-Kutta methods (actually all the
two stage, second order Runge-Kutta methods) yield identical results (the
two stage, second order Runge-Kutta method for a linear ODE is unique).
However, since our L is nonlinear, we may and do observe different results
when the two Runge-Kutta methods are used.

In Fig. 9.1 we show the result of the TVD Runge-Kutta method (9.9) and
the non-TVD method (9.21), after the shock moves about 50 grids (400 time
steps for the TVD method, 528 time steps for the non-TVD method). We
can clearly see that the non-TVD result is oscillatory (there is an overshoot).

u - exact u - exact
S.....-o .... TVD 0.. -----. non-TVD

o.€• o.5 I

30 40 50 60 X0 50 e X

Fig. 9.1. Second order TVD MUSCL spatial discretization. Solution after the shock
moves 50 grids. Left: with TVD time discretization (9.9); Right: with non-TVD time
discretization (9.21).

Such oscillations are also observed when the non-TVD Runge-Kutta method
coupled with a second order TVD MUSCL spatial discretization is applied to
a linear PDE (ut + u. = 0) (the scheme is still nonlinear due to the minmod
functions). Moreover, for some Runge-Kutta methods, if one looks at the in-
termediate stages, i.e. 0() for 1 < i < m in (9.7), one observes even bigger
oscillations. Such oscillations may render difficulties when physical problems
are solved, such as the appearance of negative density and pressure for Euler
equations of gas dynamics. On the other hand, TVD Runge-Kutta method
guarantees that each middle stage solution is also TVD.

This simple numerical test convinces us that it is much safer to use a
TVD Runge-Kutta method for solving hyperbolic problems.

9.2 TVD Multi-Step Methods

If one prefers multi-step methods rather than Runge-Kutta methods, one can
use the TVD high order multi-step methods developed in [86]. The philosophy
is very similar to the TVD Runge-Kutta methods discussed in the previous
subsection. One starts with a method of lines approximation (9.1) to the
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PDE (9.2), and an assumption that the first order Euler forward in time
discretization (9.3) is stable under a certain norm (9.4), with the time step
restriction (9.5). One then looks for higher order in time multi-step methods
such that the same stability result (9.4) holds, under a perhaps different
restriction on At in (9.6), where c is again termed the CFL coefficient for the
high order time discretization.

The general form of the multi-step methods studied in [86] is:

m

un+' = : (akun-k + At/kL(Un-k)), (9.22)
k=O

Similar to the Runge-Kutta methods in the previous subsection, if all the
coefficients are nonnegative ak >_ 0, /3 k >_ 0, then (9.22) is just a convex
combination of the Euler forward operators, with At replaced by •- At, sinceak

by consistency -M_0 a= 1. We thus have

Lemma 9.3. [86] The multi-step method (9.22) is TVD under the CFL co-
efficient (9.6):

c min k (9.23)k Ok

provided that ak Ž0 0, P3k >0. 0]

In [86], schemes up to third order were found to satisfy the conditions in
Lemma 9.3. Here we list a few examples.

The following three step (m = 2) scheme is second order and TVD

= 3u + 3AtL(u-) + (9.24)

with a CFL coefficient c = 0.5 in (9.23). This translates to the same efficiency
as the optimal second order TVD Runge-Kutta scheme (9.9), as here only one
residue evaluation is needed per time step. Of course, the storage requirement
is bigger here. There is also the problem of the starting values u1 and u2 .

The following five step (m = 4) scheme is third order and TVD

un+1 = -u2 + -5AtL(un) + 7 + 5 AtL(un- 4 ) (9.25)
3-2 632 1

with a CFL coefficient c = 0.5 in (9.23). This translates to a better efficiency
than the optimal third order TVD Runge-Kutta scheme (9.10), as here only
one residue evaluation is needed per time step. Of course, the storage require-
ment is much bigger here. There is also the problem of the starting values
u1,u2,u 3andu 4 .

There are many other TVD multi-step methods satisfying the conditions
in Lemma 9.3 listed in [86]. It seems that if one uses more storage (larger m)
one could get better CFL coefficients.
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In [86] we have been unable to find multi-step schemes of order four or
higher satisfying the condition of Lemma 9.3. As in the Runge-Kutta case,
we can relax the condition 3k > 0 by introducing the adjoint operator L. We
thus have

Lemma 9.4. [86] The multi-step method (9.22) is TVD under the CFL co-
efficient (9.6):

c = min akk (9.26)
k Iokl'

provided that ak >_ 0, and L is replaced by L for negative Pk-

Again, notice that, if we have both positive and negative 3k's, then both
L(u') and L(u') must be computed, the cost as well as storage requirement
will thus be doubled.

We list here a six step (m = 5), fourth order multi-step method which is
TVD with a CFL coefficient c = 0.245 in (9.23) [86]:

237 AtL(U 81 n4 1 6 5  n-4)
u'•+•~~~ ~~ =5•7u•+i~t(•)+-6u + •-AtL (u )

+1 n5 _ 3,At(un-5) (9.27)+-tL - (.7

9.3 The Lax-Wendroff Procedure

Another way to discretize the time variable is by the Lax-Wendroff procedure
[65]. This is also referred to as the Taylor series method for discretizing the
ODE (9.1). We will again use the simple 1D scalar conservation law (9.2) as
an example to illustrate the procedure, however it applies to more general
multidimensional systems.

Starting from a Taylor series expansion in time:

.. At 2

u(x, t + At) = u(x, t) + Ut(X, t)At + utt(x, t) + "'" (9.28)
2

The expansion is carried out to the desired order of accuracy in time. For
example, a second order in time would need the three terms written out in
(9.28). We then use the PDE (9.2) to replace the time derivatives by the
spatial derivatives:

Ut(X,t) = -f(u(X,t))x = -f'(u(x,t))u•(x,t);
utt(Xt) = -(f(u(x, t))tX

= -(f'(u(x, t) ut(x, t)), (9.29)

= ((f'(u(x, t)) 2u.(x, t)) x
=2f'(u (x, t)) f" (u (x, t) (ux (x, t))2 (f(ux)) u(X, t);
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This little exercise in (9.29) should convince us that it is always possible
to write all the time derivatives as functions of the u(x, t) and its spatial
derivatives. But the expression could be terribly complicated, especially for
multidimensional systems.

Once this is done, we substitute (9.29) into (9.28), and then discretize
the spatial derivatives of u(x, t) by whatever methods we use. For example,
in the cell averaged (finite volume) ENO schemes discussed in Sect. 4.1, we
proceed as follows. We first integrate the PDE (4.1) in space-time over the
region [x,_½, x+½I] x [tn, t,+1 ] to obtain

g,+ (j• _ f(u(x;+½,t))dt - j f(u(x&_½,t))dt) (9.30)

Then, we use a suitable Gaussian quadrature to discretize the time integration
for the flux in (9.30):

At ft f(u(xf+½,t))dt S w1 f (u(xi+½' t + 1 At), (9.31)

where P3, and wa are Gaussian quadrature nodes and weights. Next we replace
each

f(u(x I., tn + pAt

by a monotone flux:

(9.32)
and use the Lax-Wendroff procedure (9.28)-(9.29) to convert

U(X± ½,tn + pt

to u(x+ tn) and its spatial derivatives also at tn, which can then be ob-

tained by the reconstructions p(x) inside Ii and Ii+,. Notice that the accuracy
is just enough in this procedure, as each derivative of the reconstruction p(x)
will be one order lower in accuracy, but this is compensated by the At in
front of it in (9.28).

This Lax-Wendroff procedure, comparing with the method of lines ap-
proach coupled with TVD Runge-Kutta or multi-step time discretizations,
has the following advantages and disadvantages.

Advantages:

1. This is a truly one step method, hence it is quite compact (a second order
method in space and time uses only three cells on time level n to advance
to time level n + 1 for one cell), and there are no complications such as
boundary conditions needed in middle stages;
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2. It utilizes the PDE more extensively than the method of lines approach.
This is also one reason that it can be so compact.

Disadvantages:

1. The algebra is very, very complicated for multi dimensional systems. This
also increases operation counts for complicated nonlinear systems;

2. It is more difficult to prove stability properties (e.g. TVD) for higher
order methods in this framework;

3. It is difficult and costly to apply this procedure to the conservative finite
difference framework established in Sections 4.2 and 7.2.

10 Formulation of the ENO and WENO Schemes for
the Hamilton-Jacobi Equations

In this section we describe high order ENO and WENO approximations to
the Hamilton-Jacobi equation:

¢t +H(¢.,¢yv) = 0
(Xy,O0) = ¢0 (x,y)

where H is a locally Lipschitz continuous Hamiltonian and the initial con-
dition 0°(x, y) is locally Lipschitz continuous. We have written the equation
(10.1) in two space dimensions, but the discussion is valid for other space
dimensions as well.

As is well known, solutions to (10.1) are Lipschitz continuous but may
have discontinuous derivatives, regardless of the smoothness of ¢0 (x, y). The
non-uniqueness of such generalized solutions also necessitates the definition
of viscosity solutions, to single out a unique, practically relevant solution.
The viscosity solution to (10.1) is a locally Lipschitz continuous function
¢(x, y, t), which satisfies the initial condition and the following property: for
any smooth function (x, y, t), if (xo, yo,to) is a local maximum point of

- ¢, then

Ot (xo, yo, to) + H (ox(xo, yo, to) + Oy(Xo, yo, to)) < 0,

and, if (xo, Yo, to) is a local minimum point of € - ¢, then

Ot (xo,ýo, to) + Hg(ox(xo, yo, to) + Cy (xo, yo, to)) >_ 0.

Of course, the above definition means that whenever O(x, y, t) is differen-
tiable, (10.1) is satisfied in the classical sense. Viscosity solution defined this
way exists and is unique. For details and equivalent definitions of viscosity
solutions, see Crandall and Lions [24].

Hamilton-Jacobi equations are actually easier to solve than conservation
laws, because the solutions are typically continuous (only the derivatives are
discontinuous).
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As before, given mesh sizes Ax, Ay and At, we denote the mesh points as
(xi, yj, t.) = (iAx, jAy, nAt). The numerical approximation to the viscosity
solution q(xi, yj, t,) of (10.1) at the mesh point (xi, yj, t,) is denoted by 0ý.
We again use a semi-discrete (discrete in the spatial variables only) formu-
lation as a middle step in designing algorithms. In such cases, the numerical
approximation to the viscosity solution ¢(xi, yj, t) of (10.1) at the mesh point
(xi, yj, t) is denoted by ¢ij (t), the temporal variable t is not discretized. We

will also use the notations D' -i= and Dt = - 0w±1j0+j)

to denote the first order forward/backward difference approximations to the
left and right derivatives of ¢(x, y) at the location (xi, yj).

Since the viscosity solution to (10.1) is usually only Lipschitz continuous
but not everywhere differentiable, the formal order of accuracy of a numerical
scheme is again defined as that determined by the local truncation error in
the smooth regions of the solution. Thus, a monotone scheme of the form

- (-P,j-r,"" i+q,j+s) (10.2)

where G is a non-decreasing function of each argument, is called a first order
scheme, although the provable order of accuracy in the Loo norm is just 1 [25].
In the semi-discrete formulation, a five point monotone scheme (it does not
pay to use more points for a monotone scheme because the order of accuracy
of a monotone scheme is at most one [45]) is of the form

dt

The numerical Hamiltonian ft is assumed to be locally Lipschitz continuous,
consistent with H: !(u, u, v, v) = H(u, v), and is non-increasing in its first
and third arguments and non-decreasing in the other two. Symbolically /(4

,, f , f). It is easy to see that, if the time derivative in (10.3) is discretized
by Euler forward differencing, the resulting fully discrete scheme, in the form
of (10.2), will be monotone when At is suitably small. We have chosen the
semi-discrete formulation (10.3) in order to apply suitable nonlinearly stable
high order Runge-Kutta type time discretization, see Sect. 9.

Semi-discrete or fully discrete monotone schemes (10.3) and (10.2) are
both convergent towards the viscosity solution of (10.1) [25]. However, mono-
tone schemes are at most first order accurate. As before, we will use the mono-
tone schemes as building blocks for higher order ENO and WENO schemes.

ENO schemes were adapted to the Hamilton-Jacobi equations (10.1) by
Osher and Sethian [78] and Osher and Shu [79]. As we know now, the key
feature of the ENO algorithm is an adaptive stencil high order interpolation
which tries to avoid shocks or high gradient regions whenever possible. Since
the Hamilton-Jacobi equation (10.1) is closely related to the conservation law
(7.1), in fact in one space dimension they are exactly the same if one takes u =
0,;, it is not surprising that successful numerical schemes for the conservation
laws (7.1), such as ENO and WENO, can be applied to the Hamilton-Jacobi
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equation (10.1). ENO and WENO schemes, when applied to Hamilton-Jacobi
equations (10.1), can produce high order accuracy in the smooth regions of the
solution, and sharp, non-oscillatory corners (discontinuities in derivatives).

There are many monotone Hamiltonians [25], [78], [79]. In this section we
mainly discuss the following two:

1. For the special case H(u, v) = f(u 2, v2 ) where f is a monotone function
of both arguments, such as the example H(u, v) = /u 2 + v2 , we can use
the Osher-Sethian monotone Hamiltonian [78]:

f-oS(u+, U-, v+, v-) = f(u 2 , v2) (10.4)

where, if f is a non-increasing function of u2, u2 is implemented by

u2 = (min(u-, 0)) 2 + (max(u+, 0)) 2  (10.5)

and, if f is a non-decreasing function of u2, u2 is implemented by

u2 = (min(u+, 0)) 2 + (max(u-, 0)) 2  (10.6)

Similarly for v2 . This Hamiltonian is purely upwind (i.e. when H(u, v) is
monotone in u in the relevant domain [u-, u+] x [v-, v+], only u- or u+
is used in the numerical Hamiltonian according to the wind direction),
and simple to program. Whenever applicable it should be used. This flux
is similar to the Engquist-Osher monotone flux (4.7) for the conservation
laws.

2. For the general H we can always use the Godunov type Hamiltonian [6],
[79]:

ftG(u+, u-,v, v-) = ext uE(u-,u+) extv•j(v- ,v+) H(u, v) (10.7)

where the extrema are defined by

r a mina<u<b if a< b (10.8)
eXtucI(a'b) - maxb<u<a if a > b

Godunov Hamiltonian is obtained by attempting to solve the Riemann
problem of the equation (10.1) exactly with piecewise linear initial con-
dition determined by u± and v±. It is in general not unique, because in
general minu max, H(u, v) $ maxv minu H(u, v) and interchanging the
order of the two ext's in (10.7) can produce a different monotone Hamil-
tonian.
Godunov Hamiltonian is purely upwind and is the least dissipative among
all monotone Hamiltonians [76]. However, it might be extremely diffi-
cult to program, since in general analytical expressions for things like
minu max, H(u, v) can be quite complicated. The readers will be con-
vinced by doing the exercise of obtaining the analytical expression and
programming HG for the ellipse in ellipse case in image processing where
H(u, v) = v/au2 + 2buv + cv 2 . For this case the Osher-Sethian Hamilto-
nian HOS does not apply.
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We are now ready to discuss about higher order ENO or WENO schemes
for (10.1). The framework is quite simple: we simply replace the first order
scheme (10.3) by:

dwt- oj Mt = -H2u• (t), U-. (t), Vt (t), V-; (t)) (10.9)

where uý (t) are high order approximations to the left and right x-derivatives
of 4(x, y, t) at (xi, yj, t):

t (X= , yj, t) + O(AXr) (10.10)

Similarly for vt (t). Notice that there is no cell-averaged version now.
The key feature of ENO to avoid numerical oscillations is through the

following interpolation procedure to obtain ut (t) and vt (t). These are just
the same ENO procedure we discussed before in Sect. 3. We repeat it here
with its own notations:

ENO Interpolation Algorithm: Given point values f(xj), j = 0, ±1, ±2,...
of a (usually piecewise smooth) function f (x) at discrete nodes xj, we asso-
ciate an r-th degree polynomial Pf/ 2 (x) with each interval [xj, x j+1], with
the left-most point in the stencil as xkcr1  , constructed inductively as follows:

(1) Pf"1 2 (x) = f[x-] + f[zjxj+~](x xi), 0).= j;

(2) If kmin') and Pfjll/(x) are both defined, then let

a(') = f [x 0 1) ' " Xk('-:) + 1] 0~) f f[x 0 _1)- ' " Xk('-')+ 1-1]

and
(i) If Ia()I > 1b1, then c(l) b() and krm =n 0 1; otherwise (-) )a(').= k~~min-1otewsct)=a)

and kk =(0-1)
m zn Im

(ii) PfI'W/2(x) +7p(- ) + c(') -Rk +1) (--j+1(X + "'112• + l=0(7)( i

In the above procedure f[.,...,.] are the standard Newton divided differ-
ences, inductively defined as f[Xix 2, .. k+ = f[X2,..,Xk+1-f[•I,.,k] with

f[xi] = f(xi). 
Xk+I -l

ENO Interpolation Algorithm starts with a first degree polynomial PJ4_, 2 (x)

interpolating the function f(x) at the two grid points xj and xj+l. If we stop
here, we would obtain the first order monotone scheme. When higher order is
desired, we will in each step add just one point to the existing stencil, chosen
from the two immediate neighbors by the size of the two relevant divided
differences, which measures the local smoothness of the function f(x).
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The approximations to the left and right x-derivatives of ¢ are then taken
as

ui= xPi[/23 (x,). (10.11)

where PiI 12 J(x) is obtained by the ENO Interpolation Algorithm in the x-
direction, with y = yj and t both fixed. vt are obtained in a similar fashion.

!3
The resulting ODE (10.9) is then discretized by an r-th order TVD Runge-
Kutta time discretization in Sect. 9 to guarantee nonlinear stability. More
specifically, the high order Runge-Kutta method we use in Sect. 9 will main-
tain TVD (total-variation-diminishing) or other stability properties, if these
properties are valid for the simple first order Euler forward time discretiza-
tion of the ODE (10.9). Notice that this is different from the usual linear
stability requirement for the ODE solver. We thus obtain both nonlinear sta-
bility and high order accuracy in time. The second order (r = 2) and third
order (r = 3) methods we use which has this stability property are given by
(9.9) and (9.10), respectively.

Time step restriction is taken as

At 1 -max a-H(u, v) +- max a-H(u, v) < 0.6

where the maximum is taken over the relevant ranges of u, v. Here 0.6 is
just a convenient number used in practice. This number should be chosen
between 0.5 and 0.7 according to our numerical experience.

WENO schemes can be used in a similar fashion for Hamilton-Jacobi
equations [57]. We will not present the details here.

11 Applications to Compressible Gas Dynamics I:

Structured Mesh for Polytropic Gas

One of the main application areas of ENO and WENO schemes is compress-
ible gas dynamics. In this section we describe the applications of ENO and
WENO schemes in structured mesh for polytropic gas dynamics.

In 3D, the Euler equations of a polytropic gas are written as

Ut + f(U). + g(U)y + h(U), = 0 (11.1)

where
U = (p, pu, pv, pw, E),

f(U) = (pu, pu2 + P, puv, puw, u(E + P)),

g(U) = (pv, puv, pv 2 + P, pvw, v(E + P)),

h(U) = (pw, puw, pvw, pw2 + P, w(E + P)).
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Here p is density, (u, v, w) is the velocity, E is the total energy, P is the
pressure, related to the total energy E by

-y - 1 2E+ -P(2  +±v2 +w 2 )

with -y = 1.4 for air.
In two space dimensions, there is one fewer equation with the w compo-

nent of the velocity eliminated; in one space dimension, there are two fewer
equations with the v and w components of the velocity eliminated.

For the form of the Navier-Stokes equations, for the eigenvalues and eigen-
vectors needed for the characteristic-wise ENO and WENO schemes, and for
those equations appearing in curvilinear coordinates, see, e.g. [91].

Example 11.1. Shock tube problem. This is a standard problem for
testing codes for one dimensional shock calculations. However, it is not the
best test case for high order methods, as the solution structure is relatively
simple (basically piecewise linear). The set-up is a Riemann type initial data:

U(~X,){ UL if x < 0

UR if x >0

The two standard test cases are the Sod's problem [95]:

(PL, qL, PL) = (1, 0, 1); (11.2)

(PR, qR, PR) = (0.125, 0, 0.1)

and the Lax's problem [64]:

(PL, qL, PL) = (0.445,0.698,3.528); (11.3)

(PR,qR,PR) = (0.5, 0, 0.571)

We show the results of the finite difference WENO (third order and fifth
order) schemes for the Lax problem, in Fig. 11.1. Notice that "PS" in the
pictures means a way of treating the system cheaper than the local charac-
teristic decompositions (for details, see [55]). "A" stands for Yang's artificial
compression [105] applied to these cases [55].

We can see from Fig. 11.1 that WENO perform reasonably well for these
shock tube problem. The contact discontinuity is smeared more than the
shock, as expected. Artificial compression helps sharpening contacts. For this
problem, which is not the most demanding, the less expensive "PS" version
of WENO work quite well.

ENO schemes on this test case perform similarly. We will not give the
pictures here. See [90].

Example 11.2. Shock entropy wave interactions. This problem is very
suitable for high order ENO and WENO schemes, because both shocks and
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DENSITY t=1.3 cfl--0.6 n=101 DENSITY t=1.3 cfl=0.6 n=101
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Fig. 11.1. Shock tube, Lax problem, density. Top left: third order WENO; Top
right: fifth order WENO; Bottom left: fifth order WENO with a "cheaper" charac-
teristic decomposition; Bottom right: fifth order WENO with artificial compression.
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complicated smooth flow feature co-exist. In this example, a moving shock
interacting with an entropy wave of small amplitude. On a domain [0, 5], the
initial condition is:

p = 3.85714; u = 2.629369; P = 10.33333;

when x < 0.5, and
pw n = e--sin(kx); U = 0; P = 1;

when x > 0.5, where e and k are the amplitude and wave number of the
entropy wave, respectively. The mean flow is a pure right moving Mach 3
shock. If r is small compared to the shock strength, the shock will march
to the right at approximately the non-perturbed shock speed and generate
a sound wave which travels along with the flow behind the shock. At the
same time, the perturbing entropy wave, after "going through" the shock, is
compressed and amplified and travels approximately at the speed of u + c
where u and c are the velocity and speed of the sound of the mean flow left
to the shock. The amplification factor for the entropy wave can be obtained
by linear analysis.

Since the entropy wave here is set to be very weak relative to the shock,
any numerical oscillation might pollute the generated waves (e.g. the sound
waves) and the amplified entropy waves. In our tests, we take 6 = 0.01 and
k = 13. The amplitude of the amplified entropy waves predicted by the linear
analysis is 0.08690716 (shown in the following figures as horizontal solid lines).

In Fig. 11.2, we show the result (entropy) when 12 waves have passed
through the shock. It is clear that a lower order method (more dissipative)
damps the magnitude of the transmitted wave more seriously, especially when
the waves are traveling more and more away from the shock. We can see that,
while fifth order WENO with 800 points already resolves the passing waves
well, and with 1200 points resolves the waves excellently, a second order
TVD scheme (which is a good one among second order schemes) with 2000
points still shows excessive dissipation downstream. If we agree that fifth
order WENO with 800 points behaves similarly as second order TVD with
2000 points, then there is a saving of a factor of 2.5 in grid points. This
factor is per dimension, hence for a 3D time dependent problem the saving
of the number of space-time grids will be a factor of 2.54 P 40, a significant
saving even after factoring in the extra cost per grid point for the higher
order WENO method.

ENO schemes behave similarly for this problem.
There is a two dimensional version of this problem, when the entropy

wave can make an angle with the shock. The simulation results again show
an advantage in using a higher order method, in Fig. 11.3. Several curves
are clustered in Fig. 11.3 around the exact solution, belonging to various
fourth and fifth order ENO or WENO schemes. The circles correspond to a
second order TVD scheme, which dissipates the amplitude of the transmitted
entropy wave much more rapidly.
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Fig. 11.2. 1D shock entropy wave interaction. Entropy. Top: fifth order WENO
with 800 points; middle: fifth order WENO with 1200 points; bottom: second order
TVD with 2000 points.
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Fig. 11.3. 2D shock entropy wave interaction. Amplitude of amplified entropy
waves. 800 points (about 20 points per entropy wave length).
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Example 11.3. Steady state calculations. This is important both in gas
dynamics and in other fields of applications, such as in semiconductor device
simulation. For ENO or TVD schemes, the residue does not settle down to
machine zero during the time evolution. It will decay first and then hang at
the level of the local truncation errors. Presumably this is due to the fact that
the numerical flux is not smooth enough (it is only Lipschitz continuous but
not C1). Although this is not satisfactory, it does not seem to affect the final
solution (up to the truncation error level, which is how accurate the solution
will be anyway).

WENO schemes are much better in getting the residues to settle down to
machine zeroes, due to the smoothness of their fluxes.

In Fig. 11.4 we show the result of a one dimensional nozzle calculation.
The residue in this case settles down nicely to machine zeros. Both fourth
and fifth order WENO results are shown.

0.9- 0.9

WENO-Roe-4 WENO-Roe-5
0.8 EXACT 0.8- EXACT

0.7 0.7

0.6 0.6

0.5 - 0.5F.
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 11.4. Density. Steady quasi-lD nozzle flow. 34 points. Left: fourth order
WENO; Right: fifth order WENO.

Example 11.4. Forward facing step problem. This is a standard test
problem for high resolution schemes [104]. However, second order methods
usually already work well. High order methods might have some advantage
in resolving the slip lines. We refer the readers to [21] for an illustration of
such advantages of high order schemes.

The set up of the problem is the following: the wind tunnel is 1 length
unit wide and 3 length units long. The step is 0.2 length units high and is
located 0.6 length units from the left-hand end of the tunnel. The problem
is initialized by a right-going Mach 3 flow. Reflective boundary conditions
are applied along the walls of the tunnel and in-flow and out-flow boundary
conditions are applied at the entrance (left-hand end) and the exit (right-
hand end). For the treatment of the singularity at the corner of the step, we
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adopt the same technique used in [104], which is based on the assumption of
a nearly steady flow in the region near the corner.

In Fig. 11.5 we present the results of fifth order WENO and fourth order
ENO with 242 x 79 grid points.

DENSITY WENO-LF-5

0.5

00%. 1:0- I 1.5 2.0 2!5 30

30 contours from 0.2568 to 6.607 cfl=0.6 Grid: 242x79 t=4.

DENSITY ENO-LF-4

0.5

0.°o.0 0.5 1.0 1.5 2.0 2.5 ' '3.0
30 contours from 0.2568 to 6.607 cf1=0.6 Grid: 242x79 t=4.

Fig. 11.5. Flow past a forward facing step. Density: 242 x 79 grid points. Top: fifth
order WENO; bottom: fourth order ENO.

Example 11.5. Double Mach reflection. This is again a standard test
problem for high resolution schemes [104]. However, second order methods
usually again already work well. High order methods have some advantage
in resolving the flow below the Mach stem. We again refer the readers to [21]
for an illustration of such advantages of high order schemes.

The computational domain for this problem is chosen to be [0, 4] x [0, 1],
although only part of it, [0, 3] x [0, 1], is shown [104]. The reflecting wall lies
at the bottom of the computational domain starting from x = !-. Initially a
right-moving Mach 10 shock is positioned at x = 1, y = 0 and makes a 600
angle with the x-axis. For the bottom boundary, the exact post-shock condi-
tion is imposed for the part from x = 0 to x = and a reflective boundary
condition is used for the rest. At the top boundary of our computational
domain, the flow values are set to describe the exact motion of the Mach 10
shock. See [104] for a detailed description of this problem.

In Fig. 11.6 we present the results of fifth order WENO and fourth order
ENO with 480 x 119 grid points.

In Fig. 11.7 we present the result of fifth order WENO with a more refined
mesh, 1920 x 479 grid points, and a "blow-up" portion of the picture near
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1.0DENSITY WENO-LF-5

0.6 -

0.0 0.5 1.0 1.5 2.0 2.5 3.0

30 contours from 1.731 to 20.92 Grid: 480x119 cfl=0.6 t=0.2

1.0ENSITY ENO-LF-4

0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

30 contours from 1.731 to 20.92 Grid: 480x1 19 cfl=0.6 t=0.2

Fig. 11.6. Double Mach reflection. Density: 480 x 119 grid points. Top: fifth order
WENO; bottom: fourth order ENO.

the Mach stem. We can see the complicated structures being captured by the
scheme.

Example 11.6. 2D shock vortex interactions. High order methods have
some advantages in this case, as it resolves the vortex and the interaction
better.

The model problem we use describes the interaction between a stationary
shock and a vortex. The computational domain is taken to be [0, 2] x [0, 1]. A
stationary Mach 1.1 shock is positioned at x = 0.5 and normal to the x-axis.
Its left state is (p, u, v, P) = (1, ,f-, 0, 1). A small vortex is superposed to
the flow left to the shock and centers at (xc,yc) = (0.25,0.5). We describe
the vortex as a perturbation to the velocity (u, v), temperature (T = P) and

entropy (S = In ;) of the mean flow and denote it by the tilde values:

ui = 67_e,(er 2) sin 0

V = -E-€ea(1-r2) cos0

S (Y - 1)E 2e2a(1- 2 )

4a'y

S=0

where - = _ and r = VF(x - x,) 2 + (y - yc) 2 . Here E indicates the strength

of the vortex, a controls the decay rate of the vortex and r, is the critical
radius for which the vortex has the maximum strength. In our tests, we choose
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E = 0.3, re = 0.05 and a• = 0.204. The above defined vortex is a steady state
solution to the 2D Euler equation.

We use a grid of 251 x 100 which is uniform in y but refined in x around the
shock. The upper and lower boundaries are intentionally set to be reflective.
The results (pressure contours) are shown in Fig. 11.8 for a fifth order WENO
with the cheap "PS" way of treating characteristic decomposition for the

system.
In [30], interaction of a shock with a longitudinal vortex is also investi-

gated by the ENO method.

Example 11.7. 2D bow shock. How does the finite difference version of
ENO and WENO handle non-rectangular domain? As we mentioned before,
as long as the domain can be smoothly transformed to a rectangle, the schemes
can be handily applied.

We consider, as an example, the problem of a supersonic flow past a
cylinder. In the physical space, a cylinder of unit radius is positioned at the
origin on a x-y plane. The computational domain is chosen to be [0, 1] x [0, 1]
on - n plane. The mapping between the computational domain and the
physical domain is:

x = (R& - (Rx - 1)ý) cos(0(277 - 1)) (11.4)

y = (Ry - (Ry - 1)ý) sin(0(2q - 1)) (11.5)
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Fig. 11.8. 2D shock vortex interaction. Pressure. Fifth order WENO-LF-5-PS. 30
contours. Top left: t=0.05, Top right: t=0.20, Bottom: t=0.35.
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where we take R, = 3, Ry = 6 and 9 = 5ý. Fifth order WENO and a uniform
mesh of 60 x 80 in the computational domain are used.

The problem is initialized by a Mach 3 shock moving toward the cylinder
from the left. Reflective boundary condition is imposed at the surface of the
cylinder, i.e. ý = 1, inflow boundary condition is applied at • = 0 and outflow
boundary condition is applied at 7- = 0, 1,

We present an illustration of the mesh in the physical space (drawing
every other grid line), and the pressure contour, in Fig. 11.9. Similar results
are obtained by the ENO schemes but are not shown here.

PHYSICAL GRID 30x40 PRESSURE 60x80

4 4-

2- 2-

0o 0-

-2- -2

-4- -4-

-4 -3 -2 -1 0 1 -4 -3 -2 -1 0 1

Fig. 11.9. Flow past a cylinder. Left: the physical grid, Right: pressure. WENO-
LF-5. 20 contours.

Example 11.8. Vortex evolution. Finally, we use the following problem
to illustrate more clearly the power of high order methods. Consider the
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following idealized problem for the Euler equations in 2D: the mean flow is
p = 1, P = 1, and (u, v) = (1, 1) (diagonal flow). We add, to this mean flow,
an isentropic vortex (perturbations in (u, v) and the temperature T = P, no

perturbation in the entropy S =

(6u, v) E-e 0.5(1_r2) -

6T (7 -- 1)e 2 e 2  6-S = 0,8'yir 2

where (, = (x - 5, y - 5), r 2 = y2 + V2, and the vortex strength e = 5.
Since the mean flow is in the diagonal direction, the vortex movement is

not aligned with the mesh direction.
The computational domain is taken as [0,10] x [0,10], extended periodically

in both directions. This allows us to perform long time simulation without
having to deal with a large domain. As we will see, the advantage of the high
order methods are more obvious for long time simulations.

It is clear that the exact solution of the Euler equation with the above
initial and boundary conditions is just the passive convection of the vortex
with the mean velocity.

A grid of 802 points is used. The simulation is performed until t = 100
(10 periods in time). As can be seen from Fig. 11.10, fifth order WENO has
a much better resolution than a second order TVD scheme, especially for the
larger time t = 100.

12 Applications to Compressible Gas Dynamics II:

Unstructured Mesh for Polytropic Gas

In this section we describe the application of the third and fourth order
WENO schemes in Sect. 6.2 and Sect. 7.1, [49,50] to the two dimensional
Euler equations of a polytropic gas in general triangulations. The equations
are given by (11.1) without the third dimension.

As was mentioned in Sect. 7.4, there are two ways to extend the scalar
schemes to systems. One is to do so component by component. This is easy
to implement and cost effective, and it seems to work well for the third order
scheme. We will use component-wise methods for all numerical examples with
the third order WENO scheme in this section. Another extension method is
by the characteristic decomposition. We will give a brief description in the
following.

Let us take one side of the triangle which has the outward unit normal
(nm, ny). Let A be some average Jacobian at one quadrature point,

A= f + g (12.1)A 9 = T•+n u.
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TVD-2, cut at x=5, u=v=l, t=50 WENO-5, cut at x=5, u=v=l, t=50
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Fig. 11.10. Vortex evolution. Cut at x =5. Solid: exact solution; circles: computedsolution. Top: t = 50 (after 5 time periods); Bottom: t = 100 (after 10 time periods).
Left: second order TVD scheme; Right: fifth order WENO scheme.
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For Euler systems, the Roe's mean matrix [82] is used. Denote by R the matrix
of right eigenvectors and L the matrix of left eigenvectors of A. Then the
scalar triangular WENO scheme can be applied to each of the characteristic
fields, i.e. to each component of the vector v = L u. With the reconstructed
point values v, we define our reconstructed point values u by u = R v.

Example 12.1. Vortex evolution. This is the same test case as in Example
11.8.

The reconstruction procedure is applied to each component of the solution
U. We first compute the solution to t = 2.0 for the accuracy test. The meshes
are the same as those used in the accuracy tests in Sect. 7.1 for the scalar
linear and Burgers equations, suitably scaled for the new spatial domain. The
accuracy results for the linear schemes are shown in Table 12.1 for the uniform
meshes and Table 12.2 for the non-uniform meshes. The errors presented are
those of the cell averages of p. The accuracy results for the WENO schemes
are shown in Table 12.3 for the uniform meshes and Table 12.4 for the non-
uniform meshes.

Table 12.1. Accuracy for 2D Euler equation of smooth vortex evolution, uniform
meshes, linear schemes.

P' (3rd order) P' (4th order)
h L' error order L' error order L' error order L' error order
1 1.65E-02 - 2.60E-01 - 5.26E-03 - 7.89E-02 -

1/2 6.31E-03 1.39 1.21E-01 1.10 7.36E-04 2.84 1.62E-02 2.28
1/4 1.31E-03 2.27 2.53E-02 2.26 5.40E-05 3.77 1.03E-03 3.98
1/8 2.21E-04 2.57 4.66E-03 2.44 2.32E-06 4.54 5.36E-05 4.26

1/16 2.98E-05 2.89 6.44E-04 2.86 1.10E-07 4.40 2.48E-06 4.43
1/32 3.77E-06 2.98 8.23E-05 2.9716.37E-09 4.11 1.25E-07 4.31

We then fix the mesh at h = 1 (uniform) and compute the long time
evolution of the vortex. Fig. 12.1 is the result by the third order scheme at
t = 0 and after 1, 5 and 10 time periods, and Fig. 12.2 is the result by the
fourth order scheme. We show the line cut through the center of the vortex
for the density p. It is easy to see the difference between the third and fourth
order schemes. The fourth order scheme gives almost no dissipation even after
10 periods, while the dissipation is quite noticeable for the long time results
of the third order scheme.
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Table 12.2. Accuracy for 2D Euler equation of smooth vortex evolution, non-
uniform meshes, linear schemes.

P' (3rd order) P_ (4th order)
h L' error order L' error order L' error order L' error order

ho/2 1.81E-02 - 2.98E-01 - 7.OOE-03 - 8.16E-02 -
ho/4 7.74E-03 1.28 1.44E-01 1.05 1.18E-03 2.57 1.61E-02 2.34
ho/8 1.67E-03 2.21 2.47E-02 2.54 8.17E-05 3.85 1.31E-03 3.62

ho/16 2.86E-04 2.55 4.79E-03 2.37 4.70E-06 4.12 1.10E-04 3.57
ho/32 3.94E-05 2.86 7.95E-04 2.59 2.68E-07 4.13 7.73E-06 3.83
ho/64 5.07E-06 2.96 1.25E-04 2.67 1.56E-08 4.10 5.99E-07 3.69

Table 12.3. Accuracy for 2D Euler equation of smooth vortex evolution, uniform
meshes, WENO schemes.

P1 (3rd order) P' (4th order)
h L' error order L' error order L' error order L' error order
1 1.87E-02 - 2.95E-01 - 1.30E-02 - 2.05E-01 -

1/2 1.01E-02 0.89 2.09E-01 0.50 2.50E-03 2.38 4.45E-02 2.49
1/4 2.78E-03 1.86 6.37E-02 1.71 1.79E-04 3.80 3.29E-03 3.76
1/8 6.47E-04 2.10 3.05E-02 1.06 6.92E-06 4.69 1.96E-04 4.07

1/16 8.74E-05 2.89 8.14E-03 1.91 2.03E-07 5.09 4.95E-06 5.31
1/32 7.10E-06 3.62 5.66E-04 3.85 7.83E-09 4.70 1.96E-07 4.66

Table 12.4. Accuracy for 2D Euler equation of smooth vortex evolution, non-
uniform meshes, WENO schemes.

P' (3rd order) P' (4th order)
h L' error order L' error order L' error order L' error order

ho/2 2.12E-02 - 3.33E-01 - 1.84E-02 - 2.14E-01 -
ho/4 1.28E-02 0.73 2.27E-01 0.55 2.80E-03 2.69 3.43E-02 2.64
ho/8 3.84E-03 1.74 6.85E-02 1.73 2.12E-04 3.72 6.57E-03 2.38

ho/16 8.32E-04 2.21 3.02E-02 1.18 1.09E-05 4.28 5.91E-04 3.48
ho/32 1.26E-04 2.72 5.64E-03 2.42 3.76E-07 4.86 1.97E-05 4.91
ho/64 1.16E-05 3.44 6.19E-04 3.19 1.66E-08 4.50 6.78E-07 4.86
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Fig. 12.1. 2D vortex evolution: third order schemes. Left: linear scheme; Right:
WENO scheme.
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Fig. 12.2. 2D vortex evolution: fourth order schemes. Left: linear scheme; Right:
WENO scheme.
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Example 12.2. Shock tube problem. This is the same test case as in
Example 11.1, except that we compute the problem in two dimensions. We
consider the solution of the Euler equations in a domain of [-1, 1] x [0, 0.2]
with a triangulation of 101 vertices in the x-direction and 11 vertices in
the y-direction. The velocity in the y-direction is zero, and periodic bound-
ary condition is used in the y-direction. A portion of the mesh is shown in
Fig. 12.3. The pictures shown below are obtained by extracting the data along
the central cut line for 101 equally spaced points.

0.2

>_- 0.1

-0.3 -0.1 x 0.3 0.5

Fig. 12.3. A portion of the mesh for the Riemann problems.

The first test case is Sod's problem (11.2). Density at t = 0.40 is shown
in Fig. 12.4, left.

The second test case is the Riemann problem proposed by Lax (11.3).
Density at t = 0.26 is shown in Fig. 12.4, right.

We can observe a better resolution of the fourth order scheme over the
third order one, and also a less oscillatory result from the characteristic ver-
sion of the fourth order scheme over the component version.

Example 12.3. Forward facing step problem. This is the same test case
as in Example 11.4. However, for the corner singularity, instead of adopting
the same technique used in [104] and in Example 11.4, which is based on the
assumption of a nearly steady flow in the region near the corner, we do not
modify our method near the corner, instead we adopt the same technique as
the one used in [21], namely refining the mesh near the corner and using the
same scheme in the whole domain.

We use the third order scheme for this problem. Four meshes have been
used, see Fig. 12.5. For the first mesh, the triangle size away from the corner
is roughly equal to a rectangular element case of Ax = Ay = -, while it is
one-quarter of that near the corner. For the second mesh, the triangle size
away from the corner is the same as in the first mesh, but it is one-eighth of
that near the corner. The third mesh has a triangle size of Ax = -Ay = 1

away from the corner, and it is one-quarter of that near the corner. The last
mesh has a triangle size of Ax = Ay = --L away from the corner, and it
is one-half of that near the corner. Fig. 12.6 is the contour picture for the
density at time t = 4.0. It is clear that with more triangles near the corner
the artifacts from the singularity decrease significantly.
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Fig. 12.4. Riemann problems of Euler equations. Density. Left: Sod's problem;
Right: Lax's problem. Top: third order componentwise WENO; Middle: fourth order
componentwise WENO;, Bottom: fourth order characteristicwise WENO.
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"DENSITY: 3rd order, triangulation 1

DENSITY: 3rd order, triangulation 2
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Fig. 12.6. Forward step problem: 30 contours from 0.32 to 6.15.
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Example 12.4. Double Mach reflection. This is the same test case as in
Example 11.5.

We test both the third and the fourth order schemes. Four triangle sizes
are used, they are roughly equal to rectangular element cases of Ax = Ay =
-L Ax = Ay = --L, Ax = Ay = 1 , and Ax = Ay = --L respectively.50, 0 0 0

For the third order scheme, we use both uniform triangular mesh (equilateral
triangles) and locally refined triangular mesh (the refined region has the
above triangle sizes, Fig. 12.7 shows the region [0, 2] x [0, 1] of such a mesh
of Ax = Ay = 1 locally). For the fourth order, we use uniform triangular

50 1mesh only. For the cases of Ax = Ay = and Ax = Ay= we present
both the picture of whole region ([0, 3] x [0, 1]) and a blow-up region around
the double Mach stems. All pictures are the density contours with 30 equally
spaced contour lines from 1.5 to 21.5. We can clearly see that the fourth order
scheme captures the complicated flow structure under the triple Mach stem
much better than the third order scheme. We refer to [21] for similar results
obtained with discontinuous Galerkin methods.

0.8-

0.6-

0.4-

0.2-

005 "1:5

Fig. 12.7. Triangulation for the double Mach reflection.

13 Applications to Compressible Gas Dynamics III:

Structured Mesh for Real Gas

In this section we describe the application of the fifth order WENO scheme
on a structured mesh in Sect. 4.4 and Sect. 7.4 to solve the Euler equations
of a real gas [74].
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Third order, h : 1/50

Third order, h = 1/50 (local

Fourth order (componenlwlse), h = 1150

x

Fourth order (characterlstic), h = 1/50

Fig. 12.8. Double Mach reflection: h = j, t = 0.2.
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Third order, h = 1100

Third order, h = 1/100 (local)

x

Fourth order (componentwlse), h = 11100

x

Fourth order (characteristic), h = 11100

I0

Fig. 12.9. Double Mach reflection: h t = 0.2.
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Third order, h =11200

Third order, hIt 1/200 (local)

Fourth order (componentwise), h =1/200

Fourth order (characteristic), h =1/200

x0

Fig. 12.10. Double Mach reflection: ht t 0,= .2.
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Third order, h = 1/200

x

Third order, h = 1/200 (local)

x

Fourth order (componentwlse), h = 1W200

x

Fourth order (characteristic), h = 1/200

x

Fig. 12.11. Double Mach reflection: h = t =0.2 (blow-up).
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Third order, h = 1/400

Third order, h = 1/400 (local)

x

Fourth order (componentwlse), h = 1/400

Fourth order (characteristic), h = 1/400

Fig. 12.12. Double Mach reflection: h = 0.2.4-0,0 02
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Third order, h = 1/400

x

Third order, h =1/400 (Iocal)

x

Fourth order (characteristic), h =1/400

Fig. 12.13. Double Mach reflection: h t ~L 0.2 (blow-up).
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We consider the Euler equations for a real compressible inviscid fluid,

Otp + div (pu)= 0, t > 0, x G Rd,
Otpu + div (pu® u + p) = 0,
OtE + div ((E + p)u) = 0, (13.1)

E 2= Plu2 + p,

where the quantities p, u, p, E and E represent the density, velocity, pressure,
total energy and specific internal energy, respectively. In addition, there is
an equation of state (EOS) of the form p = p(p, e) associated with a strictly
convex entropy ps(p, E) which satisfies the following entropy inequalities

egtps + div (psu) <0 . (13.2)

The pressure law is furthermore assumed to satisfy

pe(p, ) > 0, (13.3)

p(p, 0) = 0 and p(p, oo) = 0o.

In the literature research has been done in order to extend classical
schemes designed for perfect gas to real gases. Collela and Glaz [22] ex-
tended the numerical procedure for obtaining the exact Riemann solution to
a real-gas case, Grossman and Walters [38], Liou, van Leer and Shuen [68] ex-
tended the method of flux-vector splitting and flux-difference splitting, Mon-
tagn6, Yee and Vinokur [73] developed second-order explicit shock-capturing
schemes for real gas, Glaister [34] presented an extension of approximate
linearized Riemann solver with different averaged matrices, while Loh and
Liou [71] used the generalization of their Lagrangian approach (originally
proposed for perfect gas) to obtain the real gas Riemann solution.

Most of the previous proposed methods would require a computation of
the pressure law and its derivatives, or a Riemann solver. This is not only
costly but also problematic when there is no analytical expressions of the
pressure law (for example if we have only table values).

Recently Coquel and Perthame [23] have introduced an energy relaxation
theory for Euler equations of real gas. The main idea is to introduce a relax-
ation of the nonlinear pressure law by considering an energy decomposition
under the form e = 61 + E2. The internal energy el is associated with a sim-
pler pressure law p, (which is taken as the 7-law in this section), while C2

stands for the nonlinear perturbation and is simply convected by the flow.
These two energies are also subject to a relaxation process and in the limit
of an infinite relaxation rate, one recovers the initial pressure law p.

From this general framework, Coquel and Perthame have also deduced the
extension to general pressure laws of classical schemes for polytropic gases,
which only uses a single call to the pressure law per grid point and time
step. No derivatives of the pressure law or any Riemann solvers need to be
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computed. Another advantage of their approach is that its implementation
does not depend on the particular expression of the equation of states. For
the first order Godunov scheme, they have shown that this extension satisfies
stability, entropy and accuracy conditions. Numerical examples have been
provided using first order schemes by A. In [51].

The aim of this section is to study the implementation of this relaxation
method with high order WENO schemes [55] for real gases. One and two
dimensional numerical examples will be given.

In Sect. 13.1 we provide the general framework of the energy relaxation
theory of [23]. We then give the details of the construction of the relaxed
WENO schemes for general gases. In Sect. 13.2 numerical examples are given.
We start with a description of the different equations of states used in this
section, followed by one dimensional shock tube test problems. Two dimen-
sional test cases of a smooth vortex, to test the accuracy of the schemes, and
of the double Mach reflection problem, are then presented.

13.1 Implementation of the Energy Relaxation Method with
WENO

The principle of the energy relaxation theory developed by Coquel and Perthame
[23] is to find a pressure law pi (pA, ei•) (simpler than p, typically a polytropic
law) and an internal energy ¢(p'A,Ei) so that the system (13.1) and the en-
tropy inequality (13.2) can be recovered, in the limit of an infinite relaxation
rate A (called the equilibrium limit), from the following system (called the
relaxation system):

OtpA +div(pAuA) =0, t >_O, x E ]Rd,

OtpAuA + div (pAuA ® uA + pl) = 0,
OtEi + div ((El' + pAi)uA) = Ap' (--, - W (13.4)
O 6p'ce2 + div(p u E2u ) = -Ap> (2 - el
E 1 = A A12 +A

where pi(pA',E') = (ii - 1)piE\ with yi a given constant greater than 1.
One can prove [23] that the relaxation system (13.4) can be supplemented
by entropy inequalities under the form

atpAZ + div(p\ZuA) < RED\ := -ApA(Z,slslsI - Z,ý2)( 2 -6

where si (P, ei) = p-1 /e, and the specific entropy Z denotes an arbitrary
function in Ci (IR2_) such that pZ is convex in (p, p61, Pe 2 ) and that can be
written under the form Z = Z(si(P, el),£2). RED\ represents the Rate of
Entropy Dissipation.

Formally, the original Euler system (13.1) will be recovered at A -+ +oo
with

S-= 1 + E2= -= -l (P,E1), (13.5)
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provided that we have the following condition (called the consistency condi-
tion)

P(p, 1 + -(Pel)) = PV(p, i) = (-Yl - 1)pE1. (13.6)

This last condition can be fulfilled for any given choice of -y, > 1.
But in addition to the conservative system (13.1), one also wants to re-

cover at the limit the entropy inequality (13.2). The following result, due to
Coquel and Perthame [23], gives this last condition under a characterization
of the admissible y1.

Theorem 13.1. Assuming that -/ satisfies

")yi > supp VF(p, e), F(p, e) = 1 + P
'yi > supPC ^(Pe), Y(p, = + (13.7)

p p'

provided that -ti is finite, we then have
(i) there exists a (unique) specific entropy Z(Sl, E2) such that at equilibrium
( E + tO(p,El))

s(p, E) = E(SI (p, -l0, O(P, -i)),

(ii) this entropy is uniformly compatible with the relaxation procedure, i.e.:

REDA•< 0, for all A > 0.

The procedure to solve the Euler system (13.1) within the framework of
the energy relaxation theory is the following. Given the numerical equilibrium
solution at the time level t'

p(x, tn), u(X, tn), "F(X, tn), (13.8)

this approximation is advanced to the next time level tn+l = tn + At in two
steps.

- First step: relaxation. The two internal energies e-(x, tn) and E2 (x, tn)
are obtained by (13.5) and the consistency condition (13.6):

(xin) = p p(p(Xtn),E(X, t))
(-•y - -)p(X, tn) (13.9)

62(X, tn) = E (X, tn) -- 61 (X, tn).

Notice that this step involves just one call to the pressure law per grid
point and does not involve any derivatives of the pressure law or any
iterations.
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- Second step: evolution in time. For tn < t < t'+l, we solve the Cauchy
problem for the relaxation system (13.4), with zero on the right side:

Ot p +div (pAuA) =0, t > O, x E ]Rd,
atpAuA + div (pAuA ® u +- p(') = 0,
atE\ + div ((EA + pA)uA) = 0, (13.10)

atptAC + div(p'u'Y\) = 0,

E1 =2 P I2 +pA1,

and the initial data

p(x, t'), u(x, t'), El (x, t'), C2 (x, t'), (13.11)

and we obtain at time tn+l-

p(x,tn+l-), u(x,tf+l-), 6 1 (x,tnI+-), E2 (x,tn+l-). (13.12)

At last, we compute the equilibrium solution at time tn+1 by

p(x, tn+1) = P(X, tn+1-),

u(x, tn+l) = u(x, tn+l-), (13.13)

E(x, tn+1) = 61 (x, t,+
1
-) + 6 2 (x, tn+--).

Remark 13.1. The first step is clearly a relaxation phase, as it is equivalent
to the solution of the following ODE problem for t > tn

dtp'x = O,
dtP AuA = 0, (13.14)
dtE;' = )p' (e2 - &\,E)),
dtp E2 ( = -p- (I - ,))

with initial data at time level t'

p(x, t,-), u(x, tn-), 6, (x, tn-), E2 (X, tn-). (13.15)

and to let A -+ +oo. 0

We now describe the numerical method we will use for the step of evo-
lution in time. Although our numerical results concern both one and two
dimensional problems, for simplicity of presentations we shall restrict our de-
scription to one space dimension. As we are using the finite difference version
of WENO schemes in [55], extensions to two and more spatial dimensions are
simply done dimension by dimension. Essentially, the two dimensional code
is the one dimensional code with an outside "do loop".

We have to solve for t' <t < t"'+' the following system of four equations

atU + aF(U) = 0, (13.16)
+ initial conditions given by (13.11),
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where
U = (p, pu, El,P62)T,

F(U) = (pu, pu 2 +pl, (El + pi)u, pu62 T• (13.17)

In order to solve the ordinary differential equation

d-U = L(U), (13.18)

where L(U) is a discretization of the spatial operator, we use a third-order
TVD Runge-Kutta scheme (9.10), [89].

Remark 13.2. We have two possibilities for the placement of the relaxation
step: each Runge-Kutta inner stage or each time step. With Example 13.3
below we show that the two approaches give nearly identical results in accu-
racy. Of course the second approach is less costly. We thus perform all our
calculations using the second approach. []

We now discretize the space into uniform intervals of size zAx and denote
xj = jZAx. Various quantities at xj will be identified by the subscript j.

We use the WENO procedure described in Sect. 4.1 to obtain the spatial
operator Lj(U) which approximates -8.F(U) at xj. We have tested several
possibilities for the definition of L(U) based on WENO schemes. The first one
is to use a WENO Lax-Friedrichs scheme with a full characteristic decom-
position. For this purpose we need to compute a Roe matrix for the system
(13.16) and its eigenvalues and eigenvectors. The details of this derivation
can be found in [74].

The other possibility is to compute the first three components of the
numerical flux F, I, F. by using a WENO Lax-Friedrichs scheme

with a decomposition on the Euler system characteristics and to obtain the
last numerical flux ½ with a scalar WENO Lax-Friedrichs scheme. This is

possible because the first three equations of system (13.16) are independent
from the last one.

Remark 13.3. We have also tried to compute the last numerical flux by using
a first order scheme specially designed in order to preserve the maximum
principle for 62 [63]. But with this approach, we lose the accuracy of the
high-order WENO scheme also for the other variables. El

Remark 13.4. In order to make comparisons in the numerical results we have
also implemented a WENO Lax-Friedrichs scheme with a full characteristic
decomposition for a two molecular vibrating gas (see next subsection for a
description of the related EOS). For this purpose we need a definition of the
corresponding Roe average matrix, see [74]. For the numerical comparisons for
the other real gases we use a component-wise WENO Lax-Friedrichs scheme
which requires only the computation of the sound velocity

P/p±÷P,. (13.19)P , 2E"
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13.2 Numerical Results

We present here several equations of states which we will use in the compu-
tation. We find the second one in the paper of In [51], while the third one
comes from Glaister [33]).

* Polytropic ideal gas. The equation of states for a polytropic ideal gas (also
called perfect gas) is the following

p(p, 6) = (Y - 1)pe. (13.20)

Then we have
P,p = (-Y - 1)e, p,• = (-Y - 1)p. (13.21)

Air under normal conditions (p and T moderate enough) can be considered
as a perfect gas with y = 7/5 = 1.4 (approximately a mixture of two diatomic
molecular species: 20% of 02, 80% of N 2).

* Two molecular vibrating gas. When the temperature increases the vibra-
tional motion of oxygen and nitrogen molecules in air becomes important,
and specific heats vary with temperatures. So that one must consider the
following thermally perfect, calorically imperfect model for two molecular
vibrating gas

p(p,e) = rpT(e) (13.22)

where the temperature T is given by the implicit expression

P=r + __ib (13.23)exp (e•i) - 1'

with r = 287.086 J. kg- 1 • K- 1 , C,," = r/(-tr - 1), -Ytr = 1.4, e(Vb = 10' K,

a = r. Then we have
rp(1.4

p,p = rT(E), p = ()) (13.24)

* Osborne model R. K. Osborne from the Los Alamos Scientific Laboratory
has developed a quite general equation of states in the following form [81]

p(p, E) = E + 0 (((a, + a 2 0) + E (bo + C(b, + b2 () + E(co + cl()))

(13.25)
where E = poe and C = - 1 and the constants Po, al, a 2, bo, b1, b2,
co, cl, 00 depend on the material in question. The typical values for water
are Po = 10-2, a, = 3.84 x 10-4 a2 = 1.756 x 10-1, b0 = 1.312 x 10-2,

bi = 6.265 x 10-2, b2 = 0.2133, co = 0.5132, cl = 0.6761 and 00 = 2. x 10-2.
Then we have

1
P'P - po(E + 1o) ((a, + 2a20) + E (b, + 2b 2( + Eci)),

Pe - FP0 + P+ (bo + C(b, + b2 0) + 2E(co + ciC))•
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Example 13.1. Shock tube problem. This is the one dimensional Rie-
mann problem test case with perfect gas, already used in Example 11.1. Of
course for this perfect gas situation there is no need to use the relaxation
model in practice. The purpose of this test problem is to test the behavior of
different relaxation models (different 'yl's) and different ways of treating the
relaxed system (fully characteristic and partially characteristic for the first
three equations only).

For this example, a uniform grid of 100 points are used and every 2 points
are drawn in the figures.

We first give, in Table 13.1, a CPU time comparison among the traditional
WENO characteristic scheme for the perfect gas, and the WENO scheme ap-
plied to the relaxation system, both with a fully characteristic decomposition
and with a partially characteristic decomposition for the first three equa-
tions only. The calculation is done on a SUN Ultral workstation. We can see
that while a fully characteristic decomposition is significantly more costly,
the partially characteristic decomposition is only slightly more costly than
the WENO scheme applied to the original perfect gas Euler equations.

Table 13.1. CPU time (in seconds) of different schemes for the Sod and Lax shock
tube problems for a perfect gas.

Case WENO Relaxed WENO with Relaxed WENO with
with characteristic full characteristic partial characteristic

Sod Shock 2.28 3.49 2.91
Lax Shock 3.32 4.93 4.08

In Figures 13.1 and 13.3, we present the comparison for the Sod's and
Lax's shock tube problems, of the fifth order WENO schemes, applied directly
to the perfect gas Euler equations using a characteristic decomposition, and
applied to the relaxation model with -y = 3 using only partial characteristic
decomposition of the first 3 equations. We can see that the results are very
close, except for the slight over- and under-shoots in entropy for the relaxation
model calculation. This indicates the feasibility of using the relaxation model.

In Figures 13.2 and 13.4, we present the comparison for the Sod's and
Lax's shock tube problems, of the fifth order WENO schemes. The top left
figure compares the full characteristic decomposition for the relaxation model,
with a partial characteristic decomposition for the first 3 equations only, for
"--- = 3. We can see that the results are quite close, again indicating the fea-
sibility of using the less costly partial characteristic decomposition for the
relaxation model. The top right figure compares the effect of different Y71's in
the relaxation model. Apparently bigger y1 corresponds to larger numerical
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Fig. 13.1. Sod's shock tube problem with WENO-LF-5 characteristic and relaxed
WENO-LF-5 partial characteristic with -y1 = 3.0. Top left: density; Top right:
velocity; Bottom left: pressure; Bottom right: entropy.
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dissipation. This indicates that one should always choose the smallest pos-
sible 'yi subject to stability considerations. The bottom figure compares the
relaxation WENO results for 'yi = 3 and a partial characteristic decomposi-
tion, with a component-wise WENO scheme applied directly on the original
perfect gas Euler equations. Although neither uses the correct characteris-
tic information, apparently the relaxation model results are better than the
component-wise results, especially for the Lax's problem in Figure 13.4.

M, (b)

1.1 1.1
exact exa___.ct

1 - -.- - parld.ch-r.. 1 - -.- - gams ll.3.0
09ful hae 0,9 ------

.9 8-.--,--- *illohr¢..09 -.--.-.- garn1ma=30.0

0.8 0.8

0.7 0.7

•0.0.0

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1S~ ~ ~ . . ....... ... ,.......0 . . . . . . . . . .. . .. ... o. . ...
-4 .2 0 2 44 .2 0 2 4

x x

exact

I--.- WENO O,.
1- -WENO

0.8

0.8

0.7

&o.8

0.3

0.2

0.1
...............- 0 2I.... I'

0 4 42
x

Fig. 13.2. Sod's shock tube problem with WENO-LF-5. Comparisons of partial and
full characteristic decompositions for the relaxation model with -yi = 3 (top, left);
'Y1 = 3 and -Y1 = 30 for the relaxation model with partial characteristic decomposi-
tion (top, right); and the relaxation model with partial characteristic decomposition
with 7y = 3 versus the component-wise WENO applied to the original perfect gas
Euler equations (bottom).

Example 13.2. Shock tube problem for real gas. In this example we
compute the solutions to the Riemann shock tube problem, for the two molec-
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Fig. 13.3. Lax's shock tube problem with WENO-LF-5 characteristic and relaxed
WENO-LF-5 partial characteristic with -yi = 3.0. Top left: density; Top right:
velocity; Bottom left: pressure; Bottom right: entropy.
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Fig. 13.4. Lax's shock tube problem with WENO-LF-5. Comparisons of partial and
full characteristic decompositions for the relaxation model with 7yi = 3 (top, left);
7y = 3 and -yj = 30 for the relaxation model with partial characteristic decomposi-
tion (top, right); and the relaxation model with partial characteristic decomposition
with -y = 3 versus the component-wise WENO applied to the original perfect gas
Euler equations (bottom).
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ular vibrating gas (13.22)-(13.24) and the Osborne model (13.25), with the
following initial conditions in Table 13.2.

Table 13.2. Initial conditions for the test cases for real gases.

Case State p u 6
A Left 0.066 0.0 7.22e6

Right 0.030 0.0 1.44e6
B Left 1.40 0.0 2.22e6

Right 0.14 0.0 2.24e6
C Left 1.2900 0.0 1.95e6

Right 0.0129 0.0 2.75e6
D Left 1.00 0.0 2.00e6

Right 0.01 0.0 2.50e5
E Left 0.01 2200.0 1.44e5

Right 0.14 0.0 4.00e5

For this example, a uniform grid of 200 points are used and every 4 points
are drawn in the figures. Also, the "exact solution" in the figures are obtained
with the best scheme using 2000 points.

We first give a CPU time comparison between the full characteristic de-
composition for the original model and the partial characteristic decompo-
sition using only the first three equations of the relaxation model, for the
two molecular vibrating gas model, in Table 13.3. We can see that the par-
tial characteristic decomposition for the relaxed model is usually more than
twice less costly than the full characteristic version for the original system.
Although the relaxed model has one more equation, it does not require the
computation of the complicated derivatives of the EOS.

In Figure 13.5 we show the comparison of the full characteristic decom-
position for the original model and the partial characteristic decomposition
using only the first three equations of the relaxation model, for the two molec-
ular vibrating gas model, with case A initial condition. The results are almost
identical, indicating that the relaxation model with a partial characteristic
decomposition works well with a much reduced cost.

In Figure 13.6 we show the comparison of the component WENO scheme
on the original system, and the partially characteristic WENO scheme on the
relaxed system with 'yj = 2.0, for the Osborne gas model with case A initial
condition. We can see that the result of the relaxed model is much better,
especially for the density. This indicates that the relaxation model is a good
one for the computation of real gases.
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Table 13.3. CPU time (in seconds) depending on full or partial characteristic
decomposition with a two vibrating molecular gas.

Case WENO Relaxed WENO with
with characteristic partial characteristic

A 12.68 5.21
B 4.8 2.63

C 12.53 4.87
D 15.0 5.35
E 15.0 7.84
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Fig. 13.5. Case A + two vibrating molecular gas model with WENO-LF-5 char-
acteristic and relaxed WENO-LF-5 partial characteristic with -yi = 1.5. Top left:
density; Top right: velocity; Bottom left: pressure; Bottom right: -y and F.
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Fig. 13.6. Case A + Osborne gas model with component-wise WENO-LF-5 for the
original system and relaxed WENO-LF-5 partial characteristic with 'Yi = 2.0. Top
left: density; Top right: velocity; Bottom: pressure.
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In Figure 13.7 we show the comparison of taking -'y = 10, which satisfies
the stability condition (13.7), and Y1 = 2, which satisfies only the second
inequality in the stability condition (13.7), for the partial characteristic de-
composition using only the first three equations of the relaxation model, and
the Osborne gas model with case A initial condition. We can see that the
-yj =-2 results are stable and less dissipative, indicating that in practice one
does not always have to choose y'1 satisfying both inequalities in condition
(13.7).
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Fig. 13.7. Case A + Osborne gas model with the relaxed WENO-LF-5 partial
characteristic with -yi = 10.0 and -y1 = 2.0.

We have also tested the same problems for the other initial condition cases
B, C, D and E. The results are mostly similar qualitatively as in case A. To
save space we will not present the results here.

Example 13.3. Vortex evolution. This is the same case as in Example
11.8, the purpose here being to verify the accuracy of the relaxation approach,
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especially the placement of the relaxation steps during time stepping. The
gas is ideal but we still use the relaxation model.

In Table 13.4 we show the accuracy result at t = 10 (one time period).
We can see that WENO for the relaxed model with yi = 3 gives a somewhat
larger error than WENO applied directly to the original system, but the order
of accuracy is correct. Moreover, to place the relaxation step for each Runge-
Kutta inner stage or just for each time step seems to give almost identical
results. We have thus used the less costly version of putting the relaxation
step for every time step in all the numerical examples in this section.

Table 13.4. Li error and order of accuracy at t = 10 (1 period)

Nb. points WENO
error order

20 x 20 1.07e-2
40 x 40 1.06e-3 3.3
80 x 80 6.50e-5 4.0

160 x 160 2.09e-6 4.9

Nb. points Relaxed WENO Relaxed WENO
each time step each R-K step

error order error order

20 x 20 1.22e-2 1.22e-2
40 x 40 2.16e-3 2.5 2.17e-3 2.5
80 x 80 1.77e-4 3.6 1.78e-4 3.6

160 x 160 7.57e-6 4.6 7.60e-6 4.6

Example 13.4. Double Mach reflection. First we present the results for
a perfect gas, which is the same as the case in Example 11.5. We compare
the results using WENO directly on the original system [55], and using it
on the relaxed model with yl = 1.5 and Vy = 3.0, in Fig. 13.8 for a mesh of
480 x 120 points and Fig. 13.9 for a mesh of 960 x 240 points. We can see that
the relaxed model results are quite satisfactory, although a bigger -Y, results
in some small oscillations.

Next, we show the results of the same problem with the two vibrating
molecular gas. The purpose here is to show that the relaxation model based
algorithm does work, rather than on the details of the flow with more physical
models. The results with both a 480 x 120 grid and a 960 x 240 grid are shown
in Fig. 13.10. Comparing with the results in [26], we can see that the main
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Density WENO-LF-5 charac.

Density relaxed WENO-LF-5 partial charac., gammal =1.5

30 contourilrorn .4to20.0 Grld:48U1 t=0.2

Density relaxed WENO-LF-5 partial charac., gammal=3.O

Fig. 13.8. Double-Mach reflection, perfect gas, 480 x 120 grid points.
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Density WENO-LF-5 charac.

30 contours from 1.4 to 20.0 Gdd:960x240 t=0.2

Density relaxed WENO-LF-5 parlial charac., gammal =1.5

,s,

30 contours from 1.4 to 20.0 Grld.e960x240 t=0.2

Density relaxed WEN O-LF-5 partial charac., gammal=3.0

30ontoursfroml.4to20.0 Gldd.60x240 60.2

Fig. 13.9. Double-Mach reflection, perfect gas, 960 x 240 grid points.
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features such as the main shock being closer to the bottom boundary, and
the shock below the triple point being bent, are also observed here.

Density Real gas relaxed WENO-LF-5 partial charac., gammal =1.5

Density Real gas relaxed WENO-LF-5 partial charac., gammal=1.5

ý30 6ontou4rn~e 1.4 to 31!0 4id5010 t=-0.i

Fig. 13.10. Double-Mach reflection, two vibrating molecular gas.

14 Applications to Incompressible Flows

In this section we consider numerically solving the incompressible Navier-
Stokes or Euler equations

Ut + uUu + vuy = I(Uxx + uyy) -Px

Vt + uvx + vvu = t(Vxx + vVY) -py (14.1)

UX + Vy = 0

or their equivalent conservative form

Ut + (u'2 ) + (UV)y = (Uxx + uyy) -Px

Vt + (uv)x + (v2)+ = Ig(Vxx + vvy) - Py (14.2)

Ux + Vy = 0

where (u, v) is the velocity vector, p is the pressure, it > 0 for the Navier-
Stokes equations and u = 0 for the Euler equations, using ENO and WENO
schemes. We do not discuss the issue of boundary conditions here, thus the
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equation is defined on the box [0, 27r] x [0, 21r] with periodic boundary condi-
tions in both directions. We choose two space dimensions for easy presenta-
tion, although our method is also applicable for three space dimensions.

In some sense equations (14.1) are easier to solve numerically than their
compressible counter-parts in the previous three sections, because the latter
have solutions containing possible discontinuities (for example shocks and
contact discontinuities). However, the solution to (14.1), even if for most
cases smooth mathematically, may evolve rather rapidly with time t and
may easily become too complicated to be fully resolved on a feasible grid.
Traditional linearly stable schemes, such as spectral methods and high-order
central difference methods, are suitable for the cases where the solution can
be fully resolved, but typically produce signs of instability such as oscillations
when small scale features of the flow, such as shears and roll-ups, cannot be
adequately resolved on the computational grid. Although in principle one
can always overcome this difficulty by refining the grid, today's computer
capacity seriously restricts the largest possible grid size.

As we know, the high resolution "shock capturing" schemes such as ENO
and WENO are based on the philosophy of giving up fully resolving rapid
transition regions or shocks, just to "capture" them in a stable and somehow
globally correct fashion (e.g., with correct shock speed), but at the same time
to require a high resolution for the smooth part of the solution. The success of
such an approach for the conservation laws is documented by many examples
in these lecture notes and the references. One example is the one and two
dimensional shock interaction with vorticity or entropy waves [90], [91]. The
shock is captured sharply and certain key quantities related to the interaction
between the shock and the smooth part of the flow, such as the amplification
and generation factors when a wave passes through a shock, are well resolved.
Another example is the homogeneous turbulence for compressible Navier-
Stokes equations studied in [91]. In one of the test cases, the spectral method
can resolve all the scales using a 2562 grid, while third order ENO with just
642 points can adequately resolve certain interesting quantities although it
cannot resolve local quantities achieved inside the rapid transition region such
as the minimum divergence. The conclusion seems to be that, when fully
resolving the flow is either impossible or too costly, a "capturing" scheme
such as ENO can be used on a coarse grid to obtain at least some partial
information about the flow.

We thus expect that, also for the incompressible flow, we can use high-
order ENO or WENO schemes on a coarse grid, without fully resolving the
flow, but still get back some useful information.

A pioneer work in applying shock capturing compressible flow techniques
to incompressible flow is by Bell, Colella and Glaz [8], in which they con-
sidered a second order Godunov type discretization, investigated the projec-
tion into divergence-free velocity fields for general boundary conditions, and
discussed accuracy of time discretizations. Higher order ENO and WENO
schemes for incompressible flows are extensions of such methods.
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We solve (14.2) in its equivalent projection form

t 'UV V V2 V Vx (1.3

(Ut= [_ (U2) _ (UVX±+ /_ ((U). + (14.3)

where P is the Hodge projection into divergence-free fields, i.e., if (f) =

p ( then ii., + Oy = 0 and Oy - =vy - u. See, e.g., [8]. For the

current periodic case the additional condition to obtain a unique projection
P is that the mean values of u and v are preserved, i.e., f1 f0 ii(x, y)dxdy =

f:• f: u(x,y)dxdy and f0 f0 O(x, y)dxdy = f " f v(x,y)dxdy.
We use N. and Ny (even numbers) equally spaced grid points in x and

y, respectively. The grid sizes are denoted by Ax = 2- and Ay =N--, and
the grid points are denoted by xi = iAx and yj = jAy. The approximated
numerical values of u and v at the grid point (xi, yj) are denoted by uij and
Vii.

We first describe the numerical implementation of the projection P. In
the periodic case this is easily achieved in the Fourier space. We first expand
u and v using Fourier collocation:

2 2

UN(X,y)= E E (14.4)

2 2

VN (X,Y) E EI OkleI~kx'Y

2 -2

where I 1 V/-, Ukl and vkO are the Fourier collocation coefficients which can
be computed from the point values uij and vij, using either FFT or matrix-
vector multiplications. The detail can be found in, e.g., [12]. Derivatives,
either by spectral method or by central differences, involve only multiplica-
tions by factors dx or dl' in (14.4) because eI(kx+ly) are eigenfunctions of such
derivative operators. For example,

d% = Ik, d'= Il (14.5)

for spectral derivatives;

2I sin(k-) 2Isin( 1 A-) (14.6)

for the second order central differences which, when used twice, will produce
the second order central difference approximation wT+ -2+ for wxx, and

dx - 21X/(1 - cos(kAx))(7 - cos(kAx))
Ax
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S= 21V/(1 - cos(lZAy))(7 - cos(lAy)) (14.7)

Ay

for the fourth order central differences which, when used twice, will produce
the fourth order central difference approximation

16(wi+l+w,_1)-(Wi,2+W,_2)-30wo
12Aa,

2

for w,;. High order filters, such as the exponential filter [72], [58]:
a•X = e-a (_.-)2p, a -- -()2p (48

or, == (14.8)

where 2p is the order of the filter and a is chosen so that e-' is machine
zero, can be used to enhance the stability while keeping at least 2p-th or-
der of accuracy. This is especially helpful when the projection P is used for
the under-resolved coarse grid with ENO methods. We use the fourth order
projection (14.7) and the filter (14.8) with 2p = 8 in our calculations. This
will guarantee third order accuracy (fourth order in L1) of the ENO scheme.
We will denote this combination (the fourth order projection plus the eighth

order filtering) by P 4 . To be precise, if (v) = P 4 (U) and Uk, and f1 kl

are Fourier collocation coefficients of u and v, then the Fourier collocation
coefficients of ii and 0 are given by

= ~,d•(dyfii - dO) v -d-(dy - df)u = oml -k(14.9)(do) 2 + (dY) 2 I (dX) 2 + (dr)

where ax and uf are defined by (14.8) with 2p = 8, and dx and dY are defined
by (14.7).

Next we shall describe the ENO scheme for (14.2). Since (14.2) is equiva-
lent to the non-conservative form (14.1), it is natural to implement upwinding
by the signs of u and v, and to implement ENO equation by equation (the
component version described in Sect. 4.4). The r-th order ENO approxima-
tion of, e.g., (u2 )x is thus carried out using the ENO Algorithm 4.2. We
mention a couple of facts needing attention:

1. Take f(x) = u2 (x, y) with y fixed. We start with the point values fi =

2. The stencil of the reconstruction is determined adaptively by upwinding
and smoothness of f (x). It starts with either xj or xj+l according to
whether u > 0 or u < 0.

There are two ways to handle the second derivative terms for the Navier-
Stokes equations. One can absorb them into the convection part and treat
them using ENO. For example, f(x) = u2 (x, y) can be replaced by f(x) =
u2 (x, y) - pIu(x, y)., where u(x, y)x itself can be obtained using either ENO or
central difference of a suitable order. The remaining procedure for computing
f(x)x would be the same as described above. Another simpler possibility is
just to use standard central differences (of suitable order) to compute the
double derivative terms. Our experience with compressible flow is that there
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is little difference between the two approaches, especially when the viscosity
IL is small.

In the above we have described the discretization for the spatial deriva-
tives

Li v2 (14.10)

Y = Yj

We then use the third order TVD (total variation diminishing) Runge-Kutta
method (9.10) to discretize the resulting ODE:

(U = P4Lij (14.11)
) t

obtaining:

(U) = P 4  -() + ( ( "+) 1+AtLs)1 (14.12)

(U)n+ = P4 [1 (U)fl + 2 (U)(2) + 2AL$)

Notice that we have used the property P4 o P4 = P4 in obtaining the dis-
cretization (14.12) from (14.11).

This explicit time discretization is expected to be nonlinearly stable under
the CFL condition

At [Max ( I + ± 21 )+ 2 + (1 < 1 (14.13)

For small p (which is the case we are interested in) this is not a serious
restriction on At.

We present some numerical examples in the following.

Example 14.1. Accuracy test. This example is used to check the third
order accuracy of our ENO scheme for smooth solutions. We first take the
initial condition as

u(x, y, 0) = - cos(x) sin(y), (14.14)

v(x, y, 0) = sin(x) cos(y)

which was used in [8]. The exact solution for this case is known:

u(x, y, t) = - cos(x) sin(y)e-21t, (14.15)

v(x, y, t) = sin(x) cos(y)e-2pt
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We take Ax = Ay = - with N = 32,64,128 and 256. The solution is
computed up to t = 2 and the L2 error and numerical order of accuracy
are listed in Table 14.1. For the p = 0.05 case, we list results both with
fourth order central approximation to the double derivative terms (central)
and with ENO to handle the double derivative terms by absorbing them into
the convection part (ENO). We can clearly observe fully third order accuracy
(actually better in many cases because the spatial ENO is fourth order in the
L1 sense) in this table.

Table 14.1. Accuracy of ENO Schemes for (14.2).

N ji = 0 j• = 0.05, central /•_=_0.05, ENO

L 2 error order L 2 error order L 2 error order
32 9.10(-4) 5.28(-4) 4.87(-4)
64 5.73(-5) 3.99 3.20(-5) 4.04 3.09(-5) 3.98

128 3.62(-6) 3.98 1.93(-6) 4.05 1.89(-6) 4.03
256 2.28(-7) 3.99 1.18(-7) 4.03 1.16(-7) 4.03

Example 14.2. Double shear layer. This is our test example to study
resolution of ENO schemes when the grid is coarse. It is a double shear layer
taken from [8]:

u Y, 0) {tanh((y - r/2)/p) y < 7r

"ltanh((3r/2 - y)/p) y > 7r

v(x, y, 0) = 6sin(x) (14.16)

where we take p = 7r/15 and 6 = 0.05. The Euler equations (pi = 0) are used

for this example. The solution quickly develops into roll-ups with smaller and
smaller scales, so on any fixed grid the full resolution is lost eventually. For
example, the expensive run we performed using 5122 points for the spectral
collocation code (with a 18-th order filter (14.8)) is able to resolve the solution
fully up to t = 8, Fig. 14.1, top left, as verified by the spectrum of the solution
(not shown here), but begins to lose resolution as indicated by the wriggles
in the vorticity contour at t = 10 (not shown here). On the other hand,
the ENO runs with 642 (top right) and 1282 points (bottom left) produces
smooth, stable results Fig. 14.1. In Fig. 14.1, bottom right, we show a cut
at x = 7r for v at t = 8. This gives a better feeling about the resolution in
physical space. Apparently with these coarse grids the full structure of the
roll-up is not resolved. However, when we compute the total circulation

S= f w(x,y)dxdy = f udx + vdy (14.17)
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around the roll-up by taking/2 = [ x,-] x [0, 27r] and using the rectangular
rule (which is infinite order accurate for the periodic case) on the line integrals
at the right-hand-side of (14.7), we can see that this number is resolved much
better than the roll-up itself, Table 14.2.

sDoV~ t . Volrtlty

3.03OIOI E000

1.0 I0

v cuts at t=8, x=pi

MN I2-1- EN-64S

-. 0 0 ,0 2.D 0o 4.0 0

Fig. 14.1. Double shear layer. Contours of vorticity. t = 8. Top left: spectral with
5122 points; Top right: ENO with 642 points; Bottom left: ENO with 1282 points;
Bottom right: the cut at x = ir of v, spectral method with 5122 points, ENO method
with 642 and with 1282 points.

Example 14.3. Level set formulation and vortex sheet. As an appli-
cation of ENO scheme for incompressible flow, we consider the motion of an
incompressible fluid, in two and three dimensions, in which the vorticity is
concentrated on a lower dimensional set [40]. Prominent examples are vortex
sheets and vortex filaments in three dimensions, and vortex sheets, vortex
dipole sheets and point vortices in two dimensions.

In three dimensions, the equations are written in the form

6 + vV6 - Vv 6 = 0

V x v = 6 (14.18)

V v=0

where (x, y, z, t) is the vorticity vector, and v(x, y, z, t) is the velocity vector.
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Table 14.2. Resolution of the Total Circulation.

t 2 4 6 8 10
ENO 642 0.87300 3.07100 7.16889 9.88063 10.90122
ENO 1282 0.87452 2.97810 7.30999 10.34414 11.79418

spectral 512' 0.87433 2.98029 7.28308 10.46212 11.85875

In a vortex sheet, ý is a singular measure concentrated on a two dimen-
sional surface, while in a vortex filament, ý is a function concentrated on a
tubular neighborhood of a curve.

We use an Eulerian, fixed grid, approach, that works in general in two and
three dimensions. In the particular case of the two dimensional vortex sheet
problem in which the vorticity does not change sign, the approach yields a
very simple and elegant formulation.

The basic observation involves a variant of the level set method for cap-
turing fronts, developed in [78].

The formulation we use here regularizes general ill-posed problems via the
level set approach, using the idea that a simple closed curve which is the level
set of a function cannot change its index, i.e. there is an automatic topological
regularization. This is very helpful for numerical calculations. The regular-
ization is automatically accomplished through the use of dissipative schemes,
which has the effect of adding a small curvature term (which vanishes as
the grid size goes to zero) to the evolution of the interface. The formulation
allows for topological changes, such as merging of surfaces.

The main idea is to decompose • into a product of the form

--P() (14.19)

where P is a scalar function, typically an approximate J function. The vari-
able V is a scalar function whose zero level set represents the points where
vorticity concentrates, and 77 represents the vorticity strength vector. This
decomposition is performed at time zero and is of course not unique.

The observation is that once a decomposition is found, the following sys-
tem of equations yields a solution to the Euler equations, replacing the orig-
inal set of equations (14.18).

Vt + vVO = 0

7t + vVI - Vv 7 = 0 (14.20)

V x v = P(V)7

V v=O

These equations have initial conditions

VA O) =
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where V0, 770 and P are chosen so that (14.19) holds at time t = 0. Notice
that (14.19) and (14.20) imply that VV is orthogonal to 71, and div(7) = 0.
This is enforced in the initial condition and is maintained automatically by
(14.19) and (14.20).

When P is a distribution, such as a 6 function, approaching P with a
sequence of smooth mollifiers P, yields a sequence of approximating solutions.
This is the approach used in numerical calculations, since the 6 function can
only be represented approximately on a finite grid. The parameter E is usually
chosen to be proportional to the mesh size.

The advantage of this formulation, is that it replaces a possibly singular
and unbounded vorticity function ý, by bounded, smooth (at least uniformly
Lipschitz) functions V and 77. Therefore, while it is not feasible to compute
solutions of (14.18) directly, it is very easy to compute solutions of (14.20).

In two dimensions, the vorticity is given by

and hence the Euler equations are given by

wt + vVw = 0

curl(v) = w (14.21)
div(v) = 0

Our formulation (14.20), becomes

Wt + vVV = 0

7t + vV7 = 0 (14.22)

curl(v) = P(v)7

div(v) = 0

where 7 is now a scalar.
If the vortex sheet strength 77 does not change sign along the curve, it can

be normalized to q = 1 and the equations take on a particularly simple and
elegant form:

Pt + v(M)VW = 0 (14.23)

where the velocity v(V) is given by

=-(~)A-' P(~V) (14.24)V -- ( •"

In this case, the vortex sheet strength along the curve is given by 1
(see (14.26)).
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We first consider the periodic vortex sheet in two dimensions, i.e. P(W) =

6(V) in (14.24). The three dimensional case is defined in detail later. The
evolution of the vortex sheet in the Lagrangian framework has been consid-
ered by various authors. Krasny [59], [60] has computed vortex sheet roll-up
using vortex blobs and point vortices with filtering. Baker and Shelley [4]
have approximated the vortex sheet by a layer of constant vorticity which
they computed by Lagrangian methods. In the context of our approach, their
approximation corresponds to approximating the 3 function by a step func-
tion.

In our framework, we use a fixed Eulerian grid, and approximate (14.23)
by the third order upwind ENO finite difference scheme with a third order
TVD Runge-Kutta time stepping. At every time step, the velocity v is first
obtained by solving the Poisson equation for the stream function TP:

AT, = -P(V)

with boundary conditions
T/(x, ±l) = 0

and periodic in x. This is done by using a second order elliptic solver FISH-
PAK. Once T1 is obtained, the velocity is recovered by v = (- !P,) by
using either ENO or central difference approximations (we do not observe
major difference among the two: the results shown are those obtained by
central difference). Once v is obtained, upwind biased ENO is easily applied
to (14.23).

The initial conditions are similar to the ones in [60], i.e given by a sinu-
soidal perturbation of a flat sheet:

soo(x, y) = y + 0.05 sin(7rx)

The boundary condition for p are periodic, of the form:

qo0t, -1, y) = ý0(t, 1, y)

ýo4 x, -1) = W(t, x, 1) - 2

The 3 function is approximated as in [80],[99] by

0 otherwise (14.25)

For fixed c, there is convergence as Ax -+ 0 to a smooth solution. One can
then take e -+ 0. This two step limit is very costly to implement numerically.
Our numerical results show that one can take e to be proportional to Ax,
but convergence is difficult to establish theoretically.

In Fig. 14.2, top left, we present the result at t = 4, of using ENO with
1282 grid points with the parameter c in the approximate 3 function chosen
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as e = 12zAx. We use the graphic package TECPLOT to draw the level curve
of V = 0. Next, we keep c = 12Ax but double the grid points in each direction
to 2562, the result of t = 4 is shown in Fig. 14.2, top right. Comparing with
Fig. 14.2, top left, we can see that there are more turns in the core at the
same physical time when the grid size is reduced and the 6 function width 6
is kept proportional to Ax. One might wonder whether the core structure of
Fig. 14.2, top right, is distorted by numerical error. To verify that this is not
the case, we keep E = 12 x 5---= - fixed, and reduce Ax, Fig. 14.2, bottom
two. The three pictures overlay very well, the bottom two pictures in Fig. 14.2
are indistinguishable, indicating that the core structure is a resolved solution
to the problem and convergence is obtained with fixed E. By reducing ( for
the more refined grids, more turns in the core can be obtained in shorter time
(pictures not shown).

t=4 t=4
1282 points 256e points

i% D.1 = 3/32

t=4 t=4

5122 points 10240 points
e=.4 A tx 0 e=48Ax

= 3/32 =3/32

A..* I...U -. oo

Fig. 14.2. Two dimensional vortex sheet simulation. t = 4. Top left: ENO with
1282 points, J function width e = 12Ax = 3; Top right: ENO with 2562 points,
6 function width e = 12Ax = 3 Bottom left: ENO with 5122 points, J function

32 
2width e = 24Ax - Bottom right; ENO with 10242 points, 3 function width

c = 48Ax =
32"

The smoothing of the 6 function, and the third order truncation error in
the advection step and the second order error in the inverse Laplacian are
the only smoothing steps in our method.
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We now give the same example in three dimensions. We first sketch the
algorithm for initializing and computing a periodic 3D vortex sheet, using
(14.20).

We let P(p) = 6(ýp) (in practice 6 is replaced by an approximation). The
zero level set of o is the vortex sheet F(s), parameterized by surface area s.
The variable 770 is chosen to fit the initial vortex sheet strength. For instance,
given any smooth test function g

(6 g) = 0m6 @(O),g)

= I i1o(Fo(s))g(Fo(s)) vI-ds

Thus, the initial vortex sheet strength is given by

770 (14.26)1VW01

To obtain the velocity vector, one introduces the vector potential A, where

v=VxA, div(A)=O

and solves the Poisson equation

AA = -P(W)1 1  (14.27)

To ensure that div(A) = 0, we require that div(11) = 0 and that VW- 7 = 0
initially. It is easy to see that these equalities are maintained as t increases.

The boundary conditions for the velocity are v2 (x, ±-1, z) = 0 and periodic
in x and z. To obtain the boundary conditions for A = (A 1, A2 , A3), we
use the divergence free condition on A in addition to the velocity boundary
condition. Thus,

Ai(x, ±1, z) = A3(x, ±1, z) = 0 (14.28)

O6A2 (x, ±1, z) = 0

and periodic in x, z. The Neumann condition requires the following compat-
ibility condition

J 6 2 (x, y,z,0)dxdydz = 0

Three dimensional runs are much more expensive than two dimensional
runs, not only because the number of grid points increases, but also because
there are now four evolution equations (for W and 11), and three potential
equations. We still use the third order ENO scheme coupled with the sec-
ond order elliptic solver FISHPAK, with 643 grid points, and C is chosen as
6Ax, which is the same in magnitude as that used in Fig. 14.2 of the two
dimensional example. The boundary conditions for W are similar to the ones
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in two dimensions: periodic in all directions (module the linear term in y).
The vortex sheet strength vector 77 is periodic in all directions.

We first verify whether we can recover the two dimensional results with
the three dimensional setting. We use the initial condition

o0 (x, y, z) = y + 0.05 sin(irx)

which is the same as that for the two dimensional example, and choose a
constant initial condition for 17 as 71o (x, y, z) = (0,0, 1). We observe exact
agreement with our two dimensional results in Fig. 14.2. Next, we consider
the truly three dimensional problem with the initial condition chosen as

W0 (x, y, z) = y + 0.05 sin(7rx) + 0.1 sin(7rz)

and 77 is chosen as rjo(x,y,z) = (0, -0.17rcos(7rz), 1) which satisfies the di-
vergence free condition as well as the condition to be orthogonal to VW. In
Fig. 14.3, left, we show the level set of W- = 0 for t = 5. We can clearly see the
roll up process and the three dimensional features. The cut at the constants
z = 0 plane is shown in Fig. 14.3, right.

t=5 :

64' points t=5

S GAX 643 points

e=6Ax

cut at z=O

tt oo

Fig. 14.3. Three dimensional vortex sheet simulation. t = 5. ENO with 64' points.
3 function width c = 6Ax. Left: three dimensional level surface; Right: z = 0 plane
cut.
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